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Simplifying Fixpoint Computations in
Verification of Real-Time Systems

Jesper B. Mgller

Department of Innovation, The IT University of Copenhagen
Glentevej 67, DK-2400 Copenhagen NV
Email: jm@it.edu

Abstract. Symbolic verification of real-time systems consists of computing the least fixpoint
of a functional which given a set of states ¢ returns the states that are reachable from ¢ (in
forward reachability), or that can reach ¢ (in backward reachability). This paper presents two
techniques for simplifying the fixpoint computation: First, I demonstrate that in backwards
reachability, clock resets and discrete state changes can be performed as substitutions instead
of existential quantifications over reals and Booleans, respectively. Second, I introduce a
local-time model for real-time systems which allows clocks to advance asynchronously, thus
resulting in an over-approximation of the least fixpoint, but which in some cases is sufficient
for verifying a temporal property.

1 Introduction

Symbolic model checking is an efficient technique for verifying the correctness of finite state sys-
tems [8]. The basic idea is to construct the set of reachable states R, and then determine whether a
given state is in R. By representing sets of states symbolically as predicates over Boolean variables
using for instance binary decision diagrams (BDDs) [7], it is possible to verify systems with a very
large number of states. Henzinger et al. [11] have shown how to extend symbolic model checking
to real-time systems, and many others have contributed to this growing research field which can
be divided into five areas:

— Notations for modeling systems (e.g., timed automata [2], timed Petri nets [4], and timed
guarded commands [12])

— Logics for specifying requirements (e.g., timed computation tree logic [1], and metric interval
temporal logic [3])

— Data structures and algorithms for representing and manipulating logics (e.g., difference bound
matrices [9], difference decision diagrams [22], clock difference diagrams [15], and quantifier
elimination [13])

— Techniques for formal analysis (e.g., partial order techniques [10,19], and compositional and
on-the-fly techniques [16, 5])

— Tools for automatic verification (e.g., KRONOS [29], UPPAAL [18], RED [27], and TEMPO [25])

The core operation in reachability analysis of real-time system is the computation of the least
fixpoint of a functional of the form pX[¢o V f(X)], where f is a function that given a set of states,
represented by a formula ¢, returns the set of states that are reachable from ¢ (denoted post(¢))
in forward reachability, or that can reach ¢ (denoted pre(¢)) in backward reachability.

The main contributions of this paper are two techniques for simplifying the fixpoint computa-
tion. First, I show that in backwards reachability, we can perform clock resets and discrete state
changes as substitutions instead of existential quantifications over reals and Booleans, respectively.
In forward reachability, which is used by many verification tools (e.g., [4,24,17,25]), resetting a
clock z in a set of states represented by a formula ¢ can be performed as (3z.¢) Az = 0. When
analysing the system backwards, resetting x can be performed as Ex.(qﬁ Az = O)) = ¢[0/x].
Similarly, a discrete state change that corresponds to the assignment b := e, where b is a Boolean
variable and e is an expression, can be performed backwards as 3b.(¢A (b < €)) = ¢[e/b]. Williams



et al. [28] use a similar technique for performing quantification by substitution in the analysis of
(untimed) circuits. Existential quantification is an expensive operation which complicates the sat-
isfiability problem of the underlying logic (both in the timed and untimed case) from NP-complete
to PSPACE-complete.

Second, I introduce a simple notation for modeling timed systems called §-programs. A 4-
program is a set of commands of the form dv.¢, where v is a vector of variables to update, and ¢ is
a transition relation over primed and unprimed variables. The notation is similar to timed guarded
commands [12], except that assignments are expressed as predicates over primed and unprimed
variables, and time is modeled explicitly as a program variable z which is interpreted as the common
zero point of all clocks. A command for advancing time can be specified as §z.(z' < z A P), where
P is a predicate expressing whether it is legal to change the zero point from z to z’. Introducing
time explicitly in the notation makes the semantics of §-programs simple, consisting of only one
inference rule. And, consequently, it is easy to define the symbolic reachability operators post
and pre, and prove correctness of them. I present a local-time model for real-time systems in
which clocks advance time asynchronously. This is accomplished by introducing a zero point z;
for each clock z; in a d-program, and then advancing time by using a command of the form
0z.(\i_; #{ < z; A P;), where P; specifies whether it is legal to change the zero point from z; to z}.
The local-time model results in an over-approximation of the least fixpoint, but in some cases it is
still possible to use this over-approximation for verifying a temporal property.

I have implemented the two techniques using a data structure called difference decision dia-
grams [22], and evaluated the efficiency of the techniques on some real-time case studies. Exper-
iments show that backwards reachability performs better than forward reachability with respect
to both time and space consumptions. In conjunction with the local-time model, it is furthermore
possible to verify mutual exclusion for Fischer’s protocol in linear time, and to compute the exact
reachable state space for the alpha and beta examples defined in [6], also in linear time.

The rest of the paper is organized as follows: Section 2 introduces §-programs for modeling real-
time systems, and Section 3 describes the two techniques for simplifying the fixpoint computation.
Section 4 reports experimental results for the two techniques using an implementation of difference
decision diagrams [23], and Section 5 concludes with a discussion of the advantages and limitations
of the presented ideas, and suggestions for future research.

2 Modeling Timed Systems

d-programs are a simple notation for modeling real-time systems similar to timed guarded com-
mands [12] but allowing nondeterministic, independent-choice assignments of real variables. The
notation is expressive enough to encode popular models of systems with time such as timed au-
tomata [2] and timed Petri nets [4].

2.1 é-Programs

The basic components of §-programs are variables, expressions, and commands.

Definition 1 (Variable). Let C be a countable set of real-valued variables called clocks ranged

over by z, and let B be a countable set of Boolean variables ranged over by b. The set of variables

is V = BUC ranged over by v. We write V' for the set of primed variables {v' | v € V'}.

Definition 2 (Expression). Let & be the set of expressions of the form:
pu=blz~d|lz—y~d|-¢|dr N2 |d1V o |Td|IT.0,

where b € B is a Boolean variable, z,y € C are clocks, d € Q is a rational constant, ~ € {<, <, =
,>,>} is a relational operator, and ¢ € P is an expression.



We use the tokens false and true to denote false and true expressions, respectively. The symbols
- (negation), A (conjunction), V (disjunction), and 3 (existential quantification) have their usual
meaning. The operators = (implication), < (biimplication) and V (universal quantification) are
defined the standard way. We define replacement of a vector v’ € V" of variables by another vector
v € V" of variables in an expression ¢, denoted by ¢[v/v’], as the syntactic substitution of all
occurrences of v} in ¢ by v;, for i = 1,...,n. We define assignment of a vector v € V" of variables
to a vector v’ € V" of variables in an expression ¢ as ¢[v := v’] = (Jv.¢)[v/v’]. The meaning of
an expression over v is defined as the standard interpretation of the variables v.

Definition 3 (State). A state s is an interpretation of the variables in V. For a vector of
variables v € V", s(v) € (BUR)"™ denotes the interpretation of v in the state s. A state s satisfies
an expression ¢, written s |= ¢, if ¢ evaluates to true in the state s, and we write [¢] for the set
of states that satisfy ¢. If any state satisfies ¢, ¢ is a tautology and we write = ¢. Let v and v’
be n-dimensional vectors of variables, and let r € (B UR)"™ be an n-dimensional vector of values.
Then the state s' = s[v := v’ + 7] is equivalent to s except that s'(v) = s(v’) +r.

Definition 4 (Command). Let v € V" be an n-dimensional vector of variables, and ¢ an
expression over v and v'. Then o command has the form dv.¢.

A command 6(vy, . .. ,v,).¢ specifies a guarded, nondeterministic, independent-choice assignment;:
Assign to each variable v; any value v}, for i = 1,...,n, such that the expression ¢ is satisfied. The
choice of a value for a variable v; in one command is made nondeterministically and independently
of choices for other variables in other commands. The expression ¢ is used to express both the
guard of the command (when it is enabled to execute) as a predicate over current-state variables v,
and the assignment of the command (the effect of executing it) as a predicate over the current-state
variables v and next-state variables v’. A command is said to be enabled in a state s if s = ¢.

Definition 5 (§-program). A §-program P is a tuple (V,C), where V. CV is a set of variables,
and C is a set of commands over V and V'. The semantics of a program is a transition system
(S,—), where S is the set of states of the program, and — is the transition relation. For each

command dv.¢ € C there is a transition RN defined by the inference rule:

sl i=r]l= g

sMs[v =7

Ezample 1. Let us consider a simple example. Let P = (V, C) be a program with variables l1,l» € B
and z1,%2,2 € C, and the following commands:

O(liylo, 1) (L AU NG AT = 2)

(5(l1,l2,1‘2).(l2 A —|l12 A li N 1"2 = Z)

§(2).(2 <2 AV"(Z' < 2" <z = (I = 21 — 2" < 5))
AVZ"(2 < 2" <z = (I = 0 — 2" < 4)))

The first command assigns to l1, 2, 21 any values 1,1}, 2} such that the expression Iy A=lj AlbAZ] =
z is satisfied. Intuitively this means, that if [ is true, then [; is set to false, l5 is set to true, and
z1 is set to z. Similarly for the second command. The third command assigns to z any value 2’ for
which 2’ <z, and Iy = 22 — 2" <4 and ls = z1 — 2" <5 are satisfied for all 2" € [?/, z].

2.2 Timed Automata

It is straightforward to translate a timed automaton [2] into an equivalent §-program. The key
idea is to introduce a special variable z which is interpreted as the common zero point of all clocks
in the automaton. As shown in [20] it is then possible to synchronously advance time in a set of
states represented by an expression ¢ as an existential quantification over z in ¢.

A timed automaton A is a tuple (£, X,Z,T): L is a set of locations, X is a set of clocks, 7 is a
set of location invariants, and 7 is a set of transitions of the form (L;,Y,G;, L;), where L; € L is



the source location, L; € £ is the destination location, G; is a guard over the clocks, and Y C X is
a set of clocks to reset when the transition is taken. Guards and location invariants are conjunctions
of clock constraints of the form X; ~ d and X; — X5 ~ d, where X;, X, € X are clocks.

We translate a timed automaton into a d-program as follows: For simplicity, we encode each
location L; € £ as a Boolean variable I; (a logarithmic encoding may be more efficient in practice).
We encode each clock X; € X as a real-valued variable z;. For each guard G; we construct a
modified guard g; where we replace each constraint of the form X; ~ d by z; — z ~ d, and replace
each constraint of the form X; — Xy ~ d by x; — z1, ~ d. We translate location invariants I; € 7
into inv; in a similar way. For each transition of the form (L;,{Xi,..., X}, G, L;), we add the
command:

(5(li,lj,.’L‘1, e ,IL‘m).(g,' A lz A —|l; A l‘; A /\anl(mjc = Z))

Finally, we add the following command for advancing time:
§(2).(2' <2 ANy Pi),
where n is the number of locations, and
P =V2".((2' < 2" < z) = (I; = inv;[2" [2])).

Here, we change the zero point z of all clocks to some new value 2’ such that 2’ < z, since advancing
time by some amount § > 0 corresponds to decreasing the zero point z by §. Furthermore, each
location invariant inv; must hold for all intermediate zero points 2" between 2’ and z.

Exzample 2. Consider the following timed automaton:

X1:=0
X, <4 \/@X<5
2= X,:=0 t=

Translating this timed automaton gives the §-program in Example 1.

2.3 Reachability

Given a transition system (S, —) for a program P = (V,C) and a set of states S C S, we now
define the set of states reachable from S by forward execution of a single command ¢ € C, forward
execution of any command in C, and repeated forward execution of commands in C.

Definition 6 (Post). Let (S,—) be the transition system for a program P = (V,C), and let
S C S be a set of states. The set of states reachable from S by forward execution of a command
ov.¢ € C is given by

Post(S,6v.¢9) ={s' :Is € S. s RN s'}.

The set of states reachable from S by forward execution of any command in C is given by
Post(S) = Usy.gec Post(S, 0v.4).
The set of states reachable from S by repeated forward execution of any command in C is given by
Post™(S) = pX[S U Post(X)].

Here, pX[S U Post(X)] denotes the least fixpoint of S U Post(X). The least fixpoint pX[f(X)] of
a functional f can be determined by computing a series of approximations f(0), f(f(0)),... , until
a fixpoint is reached [26], that is, until fi(@) = fi+1((), for some i.

Analogously to Post, we define the corresponding sets of states that can reach S by backward
execution of a single command ¢ € C, backward execution of any command in C, and repeated
backward execution of commands in C.



Definition 7 (Pre). Let (S,—) be the transition system for a program P = (V,C), and let S C S
be a set of states. The set of states that can reach S by backward execution of a command dv.¢p € C
is given by

Pre(S,dv.¢) = {s:3s' € S. s 2% '}
The set of states that can reach S by backward execution of any command in C is given by
Pre(S) = Usyp.gcc Pre(S, 6v.¢).
The set of states that can reach S by repeated backward execution of any command in C is given

b
! Pre*(S) = pX[SU Pre(X)].

3 Verification of Timed Systems

Given a set of states S represented by a formula ¢, we shall now see how to construct a formula
post(¢) that represents the set of states reachable from S by forward execution (i.e., Post(S)),
and a formula pre(¢) that represents the set of states that can reach S by backward execution
(i.e., Pre(S)). The simple semantics of d-programs with only one inference rule makes it easy to
specify post and pre using Boolean operations in the logic of expressions. The correctness of these
symbolic reachability operators are proved in [20].

3.1 Symbolic Reachability Operators

Given an expression ¢ representing a set of states [¢] C S, we construct an expression representing
the set of states reachable from [¢].

Definition 8 (post). Let ¢o be an expression, and P = (V,C) a program. The post-operator
for forward execution of a command év.¢ € C is given by

post(f,0v.¢) = (Fv.(6 A ¢o))[v/v"].
The post-operator for forward execution of any command in C is defined as
post(¢o) = Véu.¢ec post(¢o, 0v.¢).
The post*-operator for repeated forward execution of any command in C is defined as
post™(¢o) = pX[¢o V post(X)],
where pX[¢o V post(X)] is the least fixpoint of ¢ V post(X).

Theorem 1 (Correctness of post). Let ¢y be an expression, and P = (V,C) a program. Then
Post([¢o], 6v.¢p) = [post(¢o,dv.9)] for any dv.¢ € C.

Theorem 2 (Forward reachability). Let ¢ be an expression, and P = (V,C) a program with
initial state ¢g. Then ¢ holds invariantly for P if and only if = post®(¢o) = ¢.

Similarly to the post-operators we define pre-operators for determining formulae representing
the set of states that can reach [¢].

Definition 9 (pre). Let ¢o be an expression, and P = (V,C) a program. The pre-operator for
backward execution of a command dv.¢ € C is given by

pre(¢o, 0v.¢) = Fv'.(¢ A do[v’ /v]).
The pre-operator for backward execution of any command in C is defined as

pre(¢g) = V(S'u,¢ec’ pre(¢g,0v.9).

The pre*-operator for repeated backward execution of any command in C is defined as

pre*(¢o) = pX(go V pre(X)].



Theorem 3 (Correctness of pre). Let ¢g be an expression, and P = (V,C) a program. Then
Pre([¢o], dv.¢) = [pre(po, dv.9)] for any dv.¢ € C.

Theorem 4 (Backward reachability). Let ¢ be an expression, and P = (V,C) a program with
initial state ¢g. Then ¢ holds invariantly for P if and only if [~ pre*(—¢) A ¢g.

Consider the set of states that can reach [¢o] by backward execution of the command §(z, b).(¢A
' = 2):

pre (¢, 3(z,b).(p A2’ = 2)) = 3(a',b).($ A&’ = z A do[(a, ')/ (=, b)])
=30’ .(¢l2/2'] A dol(2, ")/ (x, b)),

using the equivalence 3z'.(¢p A &' = 2) = ¢[z/z']. Thus, resetting a clock in backward reachabil-
ity analysis can be performed symbolically as a substitution instead of an existential quantifica-
tion. A similar simplification can be performed for discrete state changes using the equivalence
W (pA (b < e)) = ¢le/b]. Performing quantification as substitution significantly simplifies the
computational complexity of pre, and hence the fixpoint computation in backward reachability.
Satisfiability of quantifier-free expressions is NP-complete [12] whereas satisfiability of quantified
expressions is PSPACE-complete [13].

3.2 Local-Time Reachability Analysis

In this section I present a local-time model of §-programs. The idea is to introduce a zero point
z; for each clock z; in a d-program, and then advance clocks asynchronously. This gives an over-
approximation of the reachable state space, but in some cases it is sufficient for proving that
a d-program satisfies a given property. We do not need to change the semantics of §-programs
to advance clocks asynchronously; we simply change the command for advancing time. Without
loss of generality, we can assume that the original command for advancing time has the form
6z.(2' < 2 AN, P;), with P, = V2".((z' < 2" < 2) = ¢;), where ¢; is an expression over
clock z; and other variables, but not other clocks except x;. Now, to make all clocks advance
asynchronously, we introduce a zero point z; for each clock z;, i = 1,...,n, and then perform the
following substitutions of sub-expressions in commands: replace x; — z ~ d by z; — z; ~ d, replace

2 — 2" ~dby 2z} — 2! ~d, and replace 2’ — z ~d by 2] — z; ~ d.

Example 3. Consider again the §-program from Example 1, and let us introduce a zero point for
each of the two clocks:
(5(l1,l2,.’1]1).(l1 A —|l11 A l12 A .’L'Il = 21)
5(l17127$2)'(l2 A _11,2 A lll A 'Z-I2 = 22)
8(z1,22).(2] < 21 AV2{ (2] < 2f <21 = (lo = 31 — 2] <5)) A
2y < 2 AV2Y (2h < 2 < 29 = (I = 2 — 2 < 4)))

The two first commands are modified so that z; and x, are relative to z; and zs, respectively.
The third command is modified so that z; advances time by changing the zero point z;, and x5
advances time by changing the zero point z,.

The following theorem shows that when advancing clocks asynchronously in a §-program, the
post-operator gives an over-approximation of Post. A similar result holds for the pre-operator and
Pre. To simplify the exposition, we introduce the following notation: Let ¢ be an expression over
variables v1,...,v,. Then ¢ defines an n-ary predicate ¢(vy,...,v,) with parameters (vy,...,v,).
We write ¢(v1,...,vn) for the predicate ¢(vi1,..., V11, Vnl,-- -, Unm), Where v; are vectors.

Theorem 5 (Local-time reachability). Let ¢(z, 2’,u) be a predicate with z = (21,...,2,) and

z' = (21,-.-,2)). Let ¢o(2z,v) be a predicate, and let w = (w,...,w) and w’ = (v',...,w') be

n-dimensional vectors. Let

¢g10ba1 = pOSt(¢0 (wa U): (511)(}5(’117, wla u));
Brocal = post(¢o(z,v),dz.¢(z, 2, u))[w/z].
Then '= ¢globa1 = Plocal-



Proof. From the definition of post we get:
bytobar = (F-(9(w, ', w) A do(w,v)) ) [w/w]
= 30/ ($(w’, w,u) A do(w',v)),
and
Dioca ( b2, u) A do(z,0)) ) /2w 2]
82,2, u) A do(2,0)) ) [w/2']
: (¢<z w,u) A do(2,v).

Clearly, if there exists a w' such that ¢(w’, w,u) A ¢o(w’,v) is true, then there also exists a z,
namely z = w’, such that ¢(z,w, w) Ado(z,v) is true. Thus, Piocar follows logically from ¢giobar. O

A

That is, ¢global represents the set of states reachable from ¢g (2, v) by the command dw.¢(z, 2", u),
where we replace each occurrence of z; in ¢y and ¢ by w before the call to post. Thus, ¢giobal
corresponds to advancing all clocks synchronously using the zero point w. Analogously, diocal
represents the set of states reachable from ¢g (2, v) by the command §z.¢(z, 2/, u), where we replace
each occurrence of z; by w after the call to post. Thus, ¢ioca1 corresponds to first advancing all
clocks asynchronously using n zero points z1, ..., 2, and then unifying these zero points to w.

4 Experimental Results

I have developed a symbolic model checker for §-programs using an implementation of difference
decision diagrams (DDDs) [22] called DDDLIB [23]. This section reports experimental results for
verification of some real-time case studies. The reported CPU times are in seconds, and the DDD
sizes are in vertices (each 28 bytes). The results were obtained on a 1 GHz Pentium IIT with 2 GB
of memory running Linux.

4.1 Fischer’s Mutual Exclusion Protocol

Fischer’s mutual exclusion protocol [14] consists of N processes competing for a shared resource.
Each process can be in one of four states encoded using two Boolean variables:

idle; = =b} A =b7, rdy; = —b} AbZ, wait; = b} A b2, crit; = b} AbZ.

The processes use a shared integer variable in the range [0, N] for controlling the access to the
shared resource. For simplicity, we encode this variable using N Boolean variables idy, ..., idy.
The commands for process i are (see also Fig. 1):

5(by, b2, ;). ((idle; V wait;) Ardy; Azl = z A /\;V:1 —id;)

8(b}, b2, 25, id;). (rdy; Awaiti Az; — 2z < k Az = 2 Aid))
5(b11, b?).(wait; A crith Az — 2 > k Aid; A /\Hfz —id;)
8(by, b2, id;). (crit; Addle; A —idy)

The parameter k is a constant which determines how long a process waits until entering the
critical state. We use k = 10 in the following.! The command for advancing time is:

é(z).(z' <zA /\fil (V2""(2' < 2" <2) = (rdy; > 0 < 2; — 2" < k)))

The initial state is given by ¢g = /\fil (idle; A —id; A z; = z), and the property that there is only
one process in the critical state at a time can be expressed as ¢ = /\f;l Njzi = (erit; A crit;).

! The runtimes of Fischer’s protocol are not affected by the size of k¥ when using DDDs.



=0 id=0— z;, <k—
W= z; =0 id, x; = 1,0
crit; |« wait;
d=1Nz; >k

Fig. 1. Timed automaton for process ¢ in Fischer’s protocol.

Forward Backward Local-time backward

N | CPU time | DDD size | CPU time | DDD size | CPU time | DDD size
2 1.1 36 1.0 16 1.0 16

4 1.2 405 1.1 259 1.1 139

6 10.6 4,478 1.3 979 1.2 275

8 2138.0 50,2901 2.3 3,383 1.4 411
10 6.3 12,331 1.5 547
12 27.8 47,263 1.6 683
14 589.2 | 185,939 1.7 819
16 8521.5| 739,399 2.2 955
32 6.3 2,043
64 27.0 4,219
128 161.5 8,571
256 1318.0 17,275
512 5602.0 34,683

Table 1. Experimental results for verification of Fischer’s protocol with IV processes using forward, back-
ward, and local-time backward reachability analysis.

Fischer’s protocol guarantees mutual exclusion if and only if = post*(¢g) = ¢ (forward reacha-
bility), or = pre*(—¢) A¢o (backward reachability). I have verified Fischer’s protocol for increasing
number of processes N using forward, backward, and local-time backward reachability analysis,
see Table 1. The results for forward reachability are comparable with those obtained with Up-
PAAL [18] and KRONOS [29] using the default options. As expected, backward reachability analysis
is faster and more space efficient than forward reachability analysis. For local-time backward reach-
ability, it turns out that it is possible to prove mutual exclusion for Fischer’s protocol using the
over-approximation. The runtimes for local-time backward reachability are linear in N.

4.2 Alpha and Beta Examples

The alpha and beta examples [6] are two very simple real-time systems which, despite their sim-
plicity, are hard to analyze. The alpha example consists of N timed automata, each containing
one state and one transition. Each transition resets a clock z;, and must be taken in the interval
[[,u] since the clock was last reset. The alpha example can be modeled as a d-program with N
commands of the form:

0(bsy ). (i ANV ANz —2 21Nz, —2=0)

and a command for advancing time of the form:
6(z).(z’ SZANY, (V2" <2"<2)=> (i =>0< 2 — 2" < u)))

The initial state is given by ¢o = A, (b Az = 2).
The beta example consists of NV timed automata, each containing two states and two transitions
similar to those of the alpha example. The beta example can be modeled as N commands of the



Alpha Beta

N | CPU time | DDD size | CPU time | DDD size
16 0.1 50 0.1 34
32 0.2 98 0.2 66
64 0.4 194 0.6 130
128 1.9 386 2.8 258
256 9.8 770 16.3 514
512 49.1 1538 74.4 1026
1024 212.0 3074 317.1 2050

Table 2. Experimental results for computation of the reachable set of states for the alpha and beta
examples with IV processes using local-time forward reachability analysis.

form:
0(bi,zi).(m(bs W) Az — 2> 1Az, —2=0)

and a command for advancing time of the form:
6(z).(z' <zA /\fil (V2"(z' < 2" <2)=> (0<z; — 2" < u)))

I have computed the reachable set of states for the alpha and beta examples using forward
reachability analysis, and local-time forward reachability analysis. The results are shown in Table 2.
Using forward reachability analysis it is only possible to compute the reachable state spaces for
the two examples with up to NV = 4 within one hour when using difference decision diagrams. This
should be compared with the results of Bozga et al. [6] which were able to compute the reachable
state spaces for systems with up to N = 18 timed automata using an implementation based on
numerical decision diagrams.

Using local-time forward reachability, it turns out that the computed reachable state spaces for
the alpha and beta examples are exact, and not over-approximations. The reachable state space is
/\?;1 (bi ANO<uz; < u) for alpha, and /\fil (0 <z < u) for beta. As for Fischer’s protocol, the
runtimes are linear in N.

5 Conclusion

Analysis of timed systems is extremely difficult, and most current verification tools can only handle
moderate-sized systems with up to a few tens of clocks and a few hundred thousand discrete states.
Some of the problems are how to efficiently perform the basic verification operations, post and
pre, to compute the reachable states in a forward or backward manner; and how to efficiently
represent the infinite state space of a timed system, including how to avoid the state explosion
problem for the discrete part.

I have introduced §-programs as a uniform notation for modeling timed systems. Time is mod-
eled explicitly as a variable in the program which makes it easy to define a transitional semantics
and corresponding symbolic forward (post) and backward (pre) reachability operators. I have
showed that the pre-operator can be simplified so that resetting of clocks and discrete state changes
are performed as substitutions instead of quantifications. Introducing time on the syntactic and
not semantic level makes it easy to experiment with different models of time (e.g., strictly versus
weakly monotonic time, or local time with several zero points as demonstrated in this paper), or
even omitting time in the initial phase of the modeling.

I have presented a local-time model for d-programs which gives an over-approximation of the
correct set of reachable state. The initial experiments with this approach look promising: Using this
local-time model makes it possible to verify Fischer’s protocol in linear time, and to compute in
linear time the exact reachable state space for the alpha and beta examples defined in [6]. However,
there is no guarantee that the proposed local-time model will always work as well as in the studied



examples. An over-approximation might become too large and hence not useful. On a simple model
of a pulse-generating circuit described in [21], the local-time model described in this paper gives
an over-approximation which is too large to prove correctness of the circuit. The reason is that
the correctness of this circuit relies heavily on the correct timing between its subcomponents, and
these timing issues are to some extent ignored in the given local-time model. A solution might be
to compute a better over-approximation of the state space by letting clocks of related components
share a common zero point. Another direction for future research is to develop more efficient data
structures and algorithms for representing and manipulating formulae in the fixpoint computation.
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