
An Implementation of the MR Calculus
Theory Department, IT University of Copenhagen

Jens Christian Godskesen (jcg@it.edu)
Thomas Hildebrandt (hilde@it.edu)
Søren Eduard Jacobsen (sej@it.edu)

IT University Technical Report Series TR–TR-2002-14

ISBN 87-7949-017-4

Copyright c
�

, Jens Christian Godskesen (jcg@it.edu)
Thomas Hildebrandt (hilde@it.edu)
Søren Eduard Jacobsen (sej@it.edu)

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-017-4

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.it-c.dk

Abstract

We demonstrate a simulator for the Mobile Resource Calculus (MR), called MRsim. First, an overview of the
syntax and semantics of MR is given, along with an explanation of how the calculus is implemented. The second part
of the paper gives an example of how the simulator is used.

1 Introduction

This paper describes an implementation of a mobile calculus called the “Calculus of Mobile Resources” (MR), as
described in [1]. Actually, only a subcalculus is implemented where slots cannot be deleted. Another difference is
that the paths referring to slots are reversed. The program - written in Standard ML - is called MRsim, for Mobile
Resource Simulator. The paper also gives an overview of the syntax in order to justify the datatype design, but is not
meant to give a full introduction to MR. For details on this, see [1]. The source code is included in the appendix. It is
recommended to have MRsim running while reading this document.

1.1 An Example Session

To run MRsim, you must have a Standard ML compiler/interpreter installed. MRsim has been written using Moscow
ML1, but any Standard ML implementation should do. This example is only meant to give a feel for the MRsim
system, the interesting features of MR (e.g. mobility) are introduced later in this paper. Start up an interactive session
and apply the file “mr.sml” by typing:

- use "mr.sml";

This will load the datatypes and functions needed to define MR expressions, pretty-print them, and run the transition
functions. There are also a number of examples available (given in the file “examples.sml”). The pre-defined variable
e1 holds the expression ���

�����
���
�
. If you type

- e1;

at the prompt, you get:

> val it =
PAR(PREFIX(ACTION(ACNAME "a"), NIL), PREFIX(ACTION(coACNAME "a"), NIL)) :

prex

which is an abstract representation of the data, see section 1.2 for more detail on this. For a more human-readable
form, try:

- pp e1;

which will yield

> val it = "a.0|’a.0" : string

Notice that the prefixed “’” means co-action. There are several pretty-printing functions available, see section A for
details. The transition function t will return a tuple list of possible actions paired with the resulting expressions:

- t e1;
> val it =

[(LAMBDA(ACTION TAU), NIL),
(LAMBDA(ACTION(coACNAME "a")), PREFIX(ACTION(ACNAME "a"), NIL)),
(LAMBDA(ACTION(ACNAME "a")), PREFIX(ACTION(coACNAME "a"), NIL))] :

(pi * prex) list

To render the output more readable, use the pretty-print function ppal on the output:

- ppal it;
(tau, 0)
(’a, a.0)
(a, ’a.0)
> val it = () : unit

Where it is used to reference the last output by the command-line interpreter.

1Obtainable from http://www.dina.kvl.dk/ � sestoft/mosml.html

1

1.2 Syntax and Datatypes

The sets � of process expressions is defined by:

����� ���	� � ��
����� ���
� � � ����� ��� � ����
�� � � � �

(1)� ���	� � � � (2)

In Mrsim, this is implemented as follows:

datatype prex =
NIL (*Empty Constructor *)

| SLOT of rname * res (*SLOT is a resource (slot) *)
| PREFIX of lambda * prex (*prefix ’action’ constructor *)
| PAR of prex * prex (*PAR parallel (||) constructor *)
| REP of prex (*Replication (!) *)
| REST of rest * prex (*Restriction *)
| PROCESS of string (*PROCESS (atomic) constructor *)

and res =
EMPTY (*slots can be empty, ready to *)

| RESOURCE of prex (*accept a resource. *)

The prefix
�

is defined by:

� ���	� � � �
(3)� ���	� �"! � !$# !&% (4)

which define the set ' of labels. The actions � play the same role as in CCS [2], and ! is a direction path. Labels are
implemented in conjunction with the above:

and lambda =
ACTION of action (*ACTION is the action prefix *)

| DIRAC of lambda * addr (*Directed action *)
| MOVE of addr * addr (*MOVE will be infixed ’>’ *)
and action =

ACNAME of string
| coACNAME of string
| TAU

The datatypes for the MR grammar are the following: We have a datatype prex that models the grammar in 1 and
2, with constructors for parallel, replication, etc. and a datatype lambda that models the labels in 3 and 4. Note that it
is possible to name processes with the PROCESS constructor, though it is not defined in the MR grammar. The lambda
datatype has a “helper” datatype called action, defined by:

�)(+*-,/.
 �0�1� �
�
�
�32

(5)

The grammar in 5 is for distinguishing between actions and co-actions,
2

is the silent action. This representation yields
an abstract syntax, where the process expression

� � 4 � �
� � 5

is represented in the form:
PAR(PREFIX(ACTION(ACNAME ”a”), PROCESS ”P”), PREFIX(ACTION(coACNAME ”a”), PROCESS ”Q”)),
which is a tree structure, see figure 1. There are several shortcuts to construct MR expressions: An infixed backslash
(6) between a lambda and a process constructs a PREFIX. Two vertical bars (�) between processes constructs a PAR,
and a prefixed bang (!) constructs REP (replication).

2

ACNAME coACNAME

a

PAR

PREFIX PREFIX

QP

a

ACTIONACTION

Figure 1: Abstract Syntax Tree

1.2.1 Datatypes for Prefixes

The pi datatype is defined by:

� �0�1� 2 � � � � ! � !$# ! �&���
�� ! # �3� � # !$�+� � !$# �+� �0���
�� # ! � � (6)

The constructors that correspond to 6 are: TAU, ACTION, DIRAC/coDIRAC, MOVE/coMOVE, EXIT, ENTER,
TAKE and GIVE.

The transition semantics in Table 2 also defines a subset hereof, called
�

, to distinguish the outgoing actions from
as slot. The

�
datatype is not defined in MRsim, a function (called nest) is used to recognize the allowable transitions

from within a slot.

1.3 Structural Equivalence

�����
	����� �������������� ��� � ����
	�� �
�����
	! �" #	$� �&%'�����(�
	$�*)*+�����,�-�
	$�*)(�/.

if
�102#354 �-�*)(�

�&6'�-�
	$�) �7	��)) 8�
	9�-�) 	:�)) � ��;������=<?> �*@�"<?>������(�*@A.
if
�B0C <

Table 1: Structural equivalence.

The rules in Table 1 are implemented as follows: Rule DFE is handled by the process expression rmnil in mr.sml.
Note that the function does not neccesarily remove all NIL in a function. Rules D#G and D�H are handled by the function
transi. Rule D�I is not handled, but does not affect outcomes of transitions. Rule DKJ is handled by the function
scopeext, which transforms an expression to a normal form. This is done before applying the transition function.
Rule D�L is not handled, it is up to the user to bring an expression to normal form. Rule DKM is handled in transi (case
REP).

1.4 Transitions

The transition rules are defined in Table 2. The transi function takes an expression of type prex and returns a
(pi * prex) list of possible transitions. The rules � �ONOP ,�Q ,

�RNOS * , �ON � , � � � ,
SUT*V

,
N
 * N�� and

N Q ,/* are handled directly in
transi. Rules . � N�
XWZYOW[W are handled in the function opens. Rules (+.F\ V .R] N , ^�,=] N and * �Z_ N are handled by the
function ttau, which is called from transi’s PAR case. The

XNRS *-,
 ^ rule is handled by nest, which recognizes
allowable transitions from within slots (

�
actions). The move/co-move synchronization (rule

SUT�
 () is handled in
the function comp, as co-moves can be “born” by an exit/enter pair, thus requiring a second scan of the resulting
transitions. Table 3, contains the MRsim syntax for transitions, i.e. how the output from the program should be read.

3

�����������Z� 	

 ����� � ��������� � ����� �)

���:�(� ��� �����(�) �102#3/4 ���:�����,�X���:� ��������� �
	 � ����� �)
� � ��� �)

�� ��!� 4#" � �#$�%&(')+*-, .�� �)
���:�(� $ & %&/')+*0, .�� �)

� 2K3/4 �� A��1 � 3/4 ��2R�3�54�:���� ��!� 4#"�" � �#$6%&/'7*)+, .�� �)
�����(� $ & %&/'8*)+, .�� �)

� 2#354 �� R��1 � 3/4 ��2A�3�54�:�

���:9;�U� � ��� �)
�
	! ��� �) 	 354 �� R�3<��/�X���$� C>= ����?A@�� �
	! ��� �) 	

 F	$� ��� F	$�)

�8B;C�D;� � ���E$6%&/')�F+*0, .�� �) � � �)�FG*)�H�� �) �
� � 	$� �I$6%&/'7*)�HJ, .�� �-�) � 	:�) � �

3/4 �-�Z� �0<K4� C>= ���89ML(� � �:� *�)6HA, .�� �) � � �)�FG*)6H�� �) �
� � 	$� �)�FJ*-, .�� �) � 	:�) �

���N? 4�O � �:�E$6%
&/' ��� �) � � � ��� �) �

�:��	$� �QP�� ��4���,�-�) � 	:�) � � 3/4 �-� �,�0<K4� C>= � O @R AD;� �
�:�S$�%&T')�F+*-, .�� �) � � � *�)�HJ, .�� �) �
� � 	$� �)�FJ*�)6H�� �G4���,�-�) � 	$�) � �

3/4 �-� � �3<54� C>=

� 4 ���N��C 4 B[� ��U�� �)
�7> �*@ U:V &�� �7> �) @ �102KW,4 ��X$� �N� 4 �����A� �7>7Y @ *�&Z, [�� �7> �[@ �N���;C\� � �7> �*@ &!*0, [�� �7>7Y @

Table 2: Transition rules.

]_^a`;b C ced/f�gGh-i;j�f�kml;d .-n koh�g+jGf�kpl;drq�iAf�s n iAd n q:h�l/j+g+t�tvu��w �) ^x]r`;b C czy:kof-i;jGf�kplTd .0{ kof�s|h�g+t�f�h�kpjGf�kpl;d}d .0n koh�g+jGf�kplTd~q�iAf�s n iAd n q!h�l/jGg+t�t�u^x]r`;b C ��i;�Tg�iAjGf�kplTd { kof�s n koh�g+jGf�kpl;d}q�iAf�s n iAd n q:h�l/j+g+t�t�u��w �]) ^a`;b C ��kp�(gei;jGf�kplTd { kof�s|h�g+t�f�h�kpjGf�kplTd~d .-n koh�g+jGf�kplTd~q�iMf�s n i;d n q!h�l/j+gGt�t�u
�]�� C ��lM�(gei;jGf�kplTd .0� h�lT���pl/jJiAf�kplTd�iAf-i n!n h�g+t�t � f�lE�ml/j+iAf�kplTd�iAf �) �]�� C j+l/��lM�(geiAjGf�kplTd .3� h�l;���pl/jJiMf�kplTd�iAf-i n�n h�g+t�t � f�lS�pl/jJiAf�kpl;d�iMf �� �A� C fNi;� . f�s!gvt�kp�mgGdZf�i;jGf�kpl;d

Table 3: Transition syntax in MRsim

1.5 Restrictions

Restrictions are handled by an number of functions:
cbp: Compare

�
and � from a tuple list, and return the list where

� � � .
fln: Find free names in

�
prefixes.

cn: Compares a list of binding names with a list of prex’s and returns the prex’s that do not contain the bound names.
cln: Compares two lists. If a member of one list is equal to a member of the other list, return true, else return false.
cpn: Compares a list of bound names with free names of � from a (pi * prex) tuple list. Only returns tuple if �
does not contain bound names from the given list.
frn: Finds free names of prexs and actions.

2 Examples

2.1 Alice, Bob, Desk

We apply MRsim to the first example given in [1], where the object is to move a resource C from Alice to Bob, where
Alice and Bob do not know the names of each others’ slots.

4

2.1.1 Move resource from Alice to Bob

The example contains the Alice, Bob, Desk processes, given by:

��� ,-(N � �
�
�+�
�
��� � � ��� ,-(N % �

� .�� � � � � � � � � � � � .�� % �
	 NOS _ � �
 � � �

4 � ��� ,-(N � � .�� � 	 NOS _
The example is provided in the file “examples.sml”. Alice’ is given by

��� ,-(N % � � #

�
�

Run the transition on P, by typing

- t P;

which yields a (pi * prex) tuple list with the possible transitions. To get a more readable format of the list, type

- ppal it;

which yields (numbered here for convenience):

- ppal it;
1) (>d:0, (a.b)(a[C]|a->d.0|b[]|d->b.0|0|!d[]|d[]))
2) (d>:0, (a.b)(0|!d[]|d[]|a[C]|0|b[]|d->b.0))
3) ((a.b)>’d:C, a[]|b[]|d->b.0|!d[])
4) (tau, (a.b)(a[]|0|b[]|0|0|!d[]|d[C]))
> val it = () : unit

This produces the number of possible transitions and the resulting expression derived from P, given as a 2-tuple list.
The first transition (labelled 1 here, for convenience) is an enter action, indicating that the slot d is ready to accept a
resource. The second transition is a take, derived from a an enter (labelled 1 in the above) and a co-move, which is
not visible to the user, because of restrictions on a and b. The third transition shows the resource C exiting it’s slot a.
Because of the . � N
 rule, this exit action now “carries” the restrictions a and b. The final transition is a silent action
tau, which is the result of synchronization between the move action and a hidden co-move. It is up to the user to decide
which transition best expresses what he is trying to model. In this case, it is the tau transition. Note that the restriction
notation uses a dot (.) to separate restriction names.
In MRsim, slots should in principle all be restricted toward the environment, to prohibit an arbitrary number of pro-
cesses from entering the slots, producing enter actions, (and take if a move action is present). If this is not the
case, then as illustrated above we only choose to insert the inactive process NIL.

In our running example, we now wish to move the resource
�

to � , i.e. so
�

is in
� .�� ’s possesion, in the slot � . As

a practical measure, we set a restriction on the slot d, to hide enter actions from the replicated slot d. We also hide the
exit action from slot d[C], which combined with an enter action would produce a co-move. We do this by definfing:

� .�� % �
 # ��� �

so we have

4 % � �
��� � �
��+� � % � � � .�� � �
 # ��� � � �
 ��� � � �1�
 � � �&�

Running this through MRsim, we get:

- ppal (t P’);
(tau, (a.b.d)(S|!d[]|d[]|a[]|S|b[C]|S))
> val it = () : unit

The resource C has been moved from slot d to slot b. The user only observes the silent action tau, the “details” are
hidden by restrictions.

5

2.1.2 Synchronous Communication

Suppose Bob wants to communicate with the resource C, which resides in the slot b. He does this by using a

 , �ON (+* N

��(3*-,-.
 , which is an action that holds information of the the address that the action is supposed to have effect. We
define:

� .�� % % � (��� � .�� % % %
� � (� � %

which gives us:

4 % % � �
��� ���
��+� � % � � (� � � .�� % % % � � � � (� � % � � � �
 � � ���

The transition function returns:

- ppal (t P’’);
(tau, (a.b.d)(S|!d[]|a[]|S|b[C’]|S))
> val it = () : unit

Which shows us that Bob has communicated with the resource C, resulting in a silent action. Had we lifted the
restriction

, we would of course have seen the action/co-action in the output. To finish the example, we demonstrate

movement from an arbitrarily deep sub-location to an empty slot at another location: If we have

� .�� % % � (% � #

�
� .�� % % %

� � (% � � % �

we get the expression:

4 % % % � �
��� ���
��+� � % � � (% � #

�
� .�� % % % � � � � (% � ��� % � � � �1�
 � � �&�

Reducing this in MRsim gives us:

- ppal (t P’’’);
(tau, (a.b.d)(S|a[]|S|b[c’[]]|S|0|!d[]|d[C’]))
> val it = () : unit

Resource C has moved from the location at b.c’ to c.

2.2 Conclusion and Further Work

We have given a program which makes it possible to do automated transitions on expressions in the Mobile Resource
Calculus. There are several possible enhancements, eg. resolving the limitation of closed slots. However, the most
interesting enhancements MRsim would be implementing something similar to the Mobility Workbench [3], where it
is possible to compare transitions, show bisimulation, equivalence, etc.

References

[1] Godskesen, Hildebrandt and Sassone: A Calculus of Mobile Resources, submitted to CONCUR (2002)

[2] Robin Milner: Communication and Concurrency, Prentice Hall (1989)

[3] Björn Victor and Faron Moller: The Mobility Workbench — A Tool for the � -Calculus, Department of Computer
Systems, Uppsala University, Sweden (1994), Also available as Technical Report ECS-LFCS-94-285, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of Edinburgh, UK

6

A List of Functions and Their Datatypes

This list is not exhaustive, but represents some functions that are either essential for “operating” MRsim, or is a main
helper function, though not usually called from the interactive environment.

(*Pretty-print a process expression*)
val pp : prex -> string
(*Pretty-print a list of prex’s *)
val pl : prex list -> string list
(*Pretty-print (pi*prex) list (= output from transition function) *)
val ppal : (pi * prex) list -> unit
(*Find tau, exit/enter, give/move, take/move *)
val ttau = fn : (pi * prex) list -> (pi * prex) list -> (pi * prex) list
(*Transition function *)
val t = fn : prex -> (pi * prex) list

7

Prex.sig
signature Exp =

sig

type rname = string
type addr = rname list
type rest = rname list

datatype prex =
PAR of prex * prex (*PAR parallel (||) constructor *)

| PREFIX of lambda * prex (*prefix ’action’ constructor *)
| SLOT of rname * res (*SLOT is a resource (slot) *)
| REST of rest * prex (*Restriction *)
| REP of prex (*Replication (!) *)
| PROCESS of string (*PROCESS (atomic) constructor *)
| NIL (*Empty Constructor *)
(*Prefix datatype and constructors *)
(*Syntax: *)
(*L ::= a | r *)
(*r ::= ad | d>d’ *)
and lambda =

ACTION of action (*ACTION is the action prefix *)
| DIRAC of lambda * addr (*Directed action *)
| MOVE of addr * addr (*MOVE will be infixed ’>’ *)

(* Resource expressions. *)
(* Syntax: *)
(* r ::=

�
|p *)

and res =
EMPTY (*slots can be empty, ready to accept*)
| RESOURCE of prex (*a resource. *)

(*Action datatype. (Action, coaction and tau) *)
(*Syntax: *)
(*action ::= a|’a|tau *)
and action =

ACNAME of string
| coACNAME of string
| TAU

(*Pi datatype - am I failing to find meaningful names? :-) *)
(*This is a conservative extension of the above datatype *)
(* pi::=tau|lambda | codirac | comove | exit | enter | give | take *)
datatype pi =

LAMBDA of lambda
| coDIRAC of lambda * addr
| coMOVE of addr * addr
| EXIT of rest * addr * prex
| GIVE of rest * addr * prex
| ENTER of addr * prex
| TAKE of addr * prex

exception ppcex of string
val prac : action -> string
val pradd : string list -> string
val prl : lambda -> string
val prpi : pi -> string
val pp : prex -> string
val pl : prex list -> string list
val ppa : (pi * prex) -> string
val ppal : (pi * prex) list -> unit

val || : prex * prex -> prex
val \ : lambda * prex -> prex
val ! : prex -> prex

end

Prex.sml
(*Prex.sml Søren E. Jacobsen 2001-11-19 *)
(*This file describes the environment for the *)
(*smart card calculus. *)

structure Prex : Exp =
struct
type rname = string
type addr = rname list
type rest = rname list

8

exception Action
exception Frn

datatype prex =
PAR of prex * prex (*PAR parallel (||) constructor *)

| PREFIX of lambda * prex (*prefix ’action’ constructor *)
| SLOT of rname * res (*SLOT is a resource (slot) *)
| REST of rest * prex (*Restriction *)
| REP of prex (*Replication (!) *)
| PROCESS of string (*PROCESS (atomic) constructor *)
| NIL (*Empty Constructor *)
(*Prefix datatype and constructors *)
(*Syntax: *)
(*L ::= a | r *)
(*r ::= ad | d>d’ *)
and lambda =

ACTION of action (*ACTION is the action prefix *)
| DIRAC of lambda * addr (*Directed action *)
| MOVE of addr * addr (*MOVE will be infixed ’>’ *)

(* Resource expressions. *)
(* Syntax: *)
(* r ::=

�
|p *)

and res =
EMPTY (*slots can be empty, ready to accept*)
| RESOURCE of prex (*a resource. *)

(*Action datatype. (Action, coaction and tau) *)
(*Syntax: *)
(*action ::= a|’a|tau *)
and action =

ACNAME of string
| coACNAME of string
| TAU

(*Pi datatype - am I failing to find meaningful names? :-) *)
(*This is a conservative extension of the above datatype *)
(* pi::=tau|lambda | codirac | comove | exit | enter | give | take *)
datatype pi =

LAMBDA of lambda
| coDIRAC of lambda * addr
| coMOVE of addr * addr
| EXIT of rest * addr * prex
| GIVE of rest * addr * prex
| ENTER of addr * prex
| TAKE of addr * prex

(* Declare the infix operator "||" that represents *)
(* parallel composition *)
val || = PAR

(* lambda binds to the right, has higher precedence *)
(* than parallel *)
val \ = PREFIX

(*Let ’!’ denote replication. Implicitly prefixed. *)
val ! = REP

(*Pretty-print an action *)
fun prac (ACNAME(s)) = s

| prac (coACNAME(s)) = "’" ˆ s
| prac TAU = "tau"

(*print address *)
fun pradd [] = ""

| pradd (s::[]) = s
| pradd (s::xs) = s ˆ "." ˆ pradd xs

(*print prefix (lambda) *)
fun prl l =

case l of
ACTION a => (prac a)

| DIRAC (a,l) => prl a ˆ "." ˆ pradd l
| MOVE (s1, s2) => pradd s1 ˆ "->" ˆ pradd s2

exception ppcex of string
(*Pretty-print an MR-expression *)
fun pp prex =

(case prex of
PAR (e1, e2) => (pp e1) ˆ "|" ˆ (pp e2)

| PREFIX (l, a) => prl l ˆ "." ˆ pp a
| SLOT (r, e) =>

9

(case e of
EMPTY => r ˆ "[]"

| RESOURCE e => r ˆ "[" ˆ pp e ˆ "]")
| PROCESS s => s
| REST (r,a) => "(" ˆ pradd r ˆ ")(" ˆ pp a ˆ ")"
| REP p => "!" ˆ pp p
| NIL => "0")

(*Pretty-print pi *)
fun prpi pi =

(case pi of
LAMBDA l => prl l

| coDIRAC (a,l) => prl a ˆ ".’" ˆ pradd l
| coMOVE (s1,s2) => "’" ˆ pradd s1 ˆ "->" ˆ pradd s2
| EXIT (n,a,p) =>

if (null n) then
"’" ˆ pradd a ˆ ">:" ˆ pp p

else
"(" ˆ pradd n ˆ ")’" ˆ pradd a ˆ ">:" ˆ pp p

| GIVE (n,a,p) =>
if (null n) then
">’" ˆ pradd a ˆ ":" ˆ pp p

else
"(" ˆ pradd n ˆ ")>’" ˆ pradd a ˆ ":" ˆ pp p

| ENTER (a,p) => ">" ˆ pradd a ˆ ":" ˆ pp p
| TAKE (a,p) => pradd a ˆ ">:" ˆ pp p)

(*Print a prex list *)
fun pl l = map pp l
(*Pretty-print a (pi, prex) tuple*)
fun ppa (a,p) = "(" ˆ (prpi a) ˆ ", " ˆ (pp p) ˆ ")"

(*Pretty-print an (pi, prex) tuple list*)
fun ppal [] = ()

| ppal (list as (l::ls)) =
let

val l’ = ppa l
in

print (l’ ˆ "\n");
ppal ls

end
end

mr.sml
(*File mr.sml *)
(*Søren E. Jacobsen, 2001-10-31*)
(*Updated 2001-11-06*)
(*Transitions for the MR-calculus.*)

use "Prex.sig";
use "Prex.sml";
open Prex;

infix 5 ||;
infixr 6 \;

use "examples.sml";

fun res2prex (RESOURCE(res)) = res
| res2prex _ = NIL

(*val cbp : (pi * ’a) list -> (pi * ’a) list *)
(*Compare Beta and Pi from (pi,prex) list, and return the tuple list *)
(*where pi=’b *)
fun cbp [] = []

| cbp l = let val (pi,p) = hd l
in
case pi of

LAMBDA la =>
(case la of

ACTION a => (pi,p)::(cbp (tl l))
| DIRAC (lam,add) => (pi,p)::(cbp (tl l))
| _ => cbp (tl l))

| coDIRAC (lam, add) => (pi,p)::(cbp (tl l))
| coMOVE(add1, add2) => (pi,p)::(cbp (tl l))
| ENTER (add) => (pi,p)::(cbp (tl l))
| EXIT (add) => (pi,p)::(cbp (tl l))
| _ => cbp (tl l)

10

end

(*Free names in lambda prefixes *)
fun fln (LAMBDA(ACTION(ACNAME(s)))) = s::[]

| fln (LAMBDA(ACTION(coACNAME(s)))) = s::[]
| fln (LAMBDA(ACTION(TAU))) = []
| fln (LAMBDA(DIRAC(l,a))) = (fln (LAMBDA(l)))@a
| fln (LAMBDA(MOVE(a1,a2))) = a1@a2
| fln (coDIRAC(l,a)) = (fln (LAMBDA(l)))@a
| fln (coMOVE(a1,a2)) = a1@a2
| fln (EXIT(n,a,p)) = a
| fln (GIVE(n,a,p)) = a
| fln (ENTER(a,p)) = a
| fln (TAKE(a,p)) = a

(*Compare each member of bns (bound names) with each member of l *)
(*and return members of l not equal to bns *)
fun cn bns [] = []

| cn [] ys = ys
| cn bns ys =
let
fun eq x y = x = y

in
if List.exists (eq (hd ys)) bns

then cn bns (tl ys)
else (hd ys)::(cn bns (tl ys))

end

(* Compare two lists. If a member of one list is equal to a member in *)
(* the other list, return true, else false *)
fun cln xs [] = false

| cln [] ys = false
| cln xs ys =
let fun eq x y = x = y
in
List.exists (eq (hd xs)) ys orelse cln (tl xs) ys

end

(*Compare a name with names in a list. If name exists, return true
fun cpbn bn [] = false

| cpbn bn xs =
let fun eq x y = x = y in
List.exists (eq bn) xs

end
*)

(*val ’a cpn = fn : string list -> (pi * ’a) list -> (pi * ’a) list *)
(*Compare a list of bound names (bn) with free names of pi from *)
(*(pi,prex) tuple list. Only return tuple if pi does not contain *)
(*bound names from bn. *)
fun cpn [] xs = xs

| cpn bn [] = []
| cpn bn xs =
let
val (pi,pr) = hd xs
val fnpi = fln pi

in if cln bn fnpi
then cpn bn (tl xs)

else (pi,pr)::(cpn bn (tl xs))
end

(*Find free names of processes, actions and actions *)
exception frnex of string
fun frn (PREFIX(a,p)) = (fln (LAMBDA(a)))@(frn p)

| frn (PAR(p1,p2)) = (frn p1)@(frn p2)
| frn (SLOT(n,EMPTY)) = n::[]
| frn (SLOT(n,(RESOURCE(p)))) = n::(frn p)
| frn (REST(n,(p))) =
let

val ps = frn p
in

(cn n ps)
end

| frn (REP(p)) = frn p
| frn (PROCESS(p)) = p::[]
| frn NIL = []

(*Compare Actions in an (pi,prex) tuple. Do two *)
(*actions correspond (action/coaction) to each other? *)
fun ca ((LAMBDA(ACTION(ACNAME(ac1))), p),

11

(((LAMBDA(ACTION(coACNAME(ac2)))),p2))) = (ac1 = ac2)
| ca ((LAMBDA(ACTION(coACNAME(ac1))), p),

((LAMBDA(ACTION(ACNAME(ac2)))),p2)) = (ac1 = ac2)
| ca ((LAMBDA(DIRAC(l1,a1)),p1),(coDIRAC(l2,a2),p2)) =
ca ((LAMBDA(l1),p1),(LAMBDA(l2),p2)) andalso a1 = a2
| ca ((LAMBDA(DIRAC(ACTION(ACNAME(ac1)),ad1)), p),

(((LAMBDA(DIRAC(ACTION(coACNAME(ac2)),ad2))),p2))) =
(ac1 = ac2) andalso (ad1 = ad2)
| ca ((((LAMBDA(DIRAC(ACTION(coACNAME(ac2)),ad2))),p2)),
(LAMBDA(DIRAC(ACTION(ACNAME(ac1)),ad1)), p)) =

(ac1 = ac2) andalso (ad1 = ad2)
| ca ((coDIRAC(l1,a1),p1),

(LAMBDA(DIRAC(l2,a2)),p2)) =
ca ((LAMBDA(l1),p1),(LAMBDA(l2),p2)) andalso a1 = a2
| ca (((LAMBDA(MOVE(a1,a2)),p)),

(coMOVE(a3,a4),p2)) = a1 = a3 andalso a2 = a4
| ca ((coMOVE(a3,a4),p2),

((LAMBDA(MOVE(a1,a2)),p))) = a1 = a3 andalso a2 = a4
| ca (_,_) = false

(*Is the pi pair a1 and a2 an exit/enter pair? *)
fun isee (((EXIT(n,a1,p)),p1),
(ENTER(a2,p2),p3)) = not (cln n (frn p3))
| isee ((ENTER(a2,p2),p3),
((EXIT(n,a1,p)),p1)) = not (cln n (frn p3))
| isee (_,_) = false

(*Insert a resource in a context *)
exception insconex of string
fun inscon (cm as coMOVE(a1,a2)) p1 p2 =

(case p1 of
SLOT(n,r) => if n = (hd a2) then SLOT(n,RESOURCE(p2))
else SLOT(n,r)

| PAR(pr1,pr2) => PAR((inscon cm pr1 p2),(inscon cm pr2 p2))
| p => p)

| inscon l p1 p2 =
raise insconex (prpi l ˆ " is not a coMove action")

exception eecaexception
(*Produce a comove action for an exit/enter pair *)
fun eeca ((EXIT(n,a1,pr1),p1), (ENTER(a2,pr2),p2)) =

let
val cm = coMOVE(a1,a2)

in
if n = []

then (cm,PAR(p1,(inscon cm p2 pr1)))
else

(cm,REST(n,PAR(p1,p2)))
end
| eeca ((ENTER(a2,pr2),p2), (EXIT(n,a1,pr1),p1)) =
let val cm = coMOVE(a1,a2)
in
if n = []

then (cm,PAR(p1,(inscon cm p2 pr1)))
else
(cm,REST(n,PAR(p1,p2)))

end
| eeca (_,_) = raise eecaexception

(*Is the pi pair an exit/move pair? *)
fun isem ((EXIT(n,a1,p),p1),

((LAMBDA(MOVE(a2,a3))),p2)) =
if (a1 = a2) andalso not (cln n (frn p2)) then true else false
| isem (((LAMBDA(MOVE(a2,a3))),p2),
(EXIT(n,a1,p),p1)) =
if (a1 = a2) andalso

not (cln n (frn p2)) then true else false
| isem (_,_) = false

(*Produce a give action for an exit/move pair *)
exception eegaex
fun emga ((EXIT(n,a1,p),p1),
(LAMBDA(MOVE(a2,a3)),p2)) = (GIVE(n,a3,p),PAR(p1,p2))
| emga ((LAMBDA(MOVE(a2,a3)),p2),
(EXIT(n,a1,p),p1)) = (GIVE(n,a3,p),PAR(p1,p2))
| emga (_,_) = raise eegaex

(*Is the pair an enter/move pair? *)
fun isenm ((ENTER(a1,p),p1),((LAMBDA(MOVE(a2,a3))),p2)) = (a1 = a3)

| isenm ((LAMBDA(MOVE(a2,a3)),p2),(ENTER(a1,p),p1)) = (a1 = a3)

12

| isenm (_,_) = false

(*Produce a take action for an enter/move pair *)
exception emtaex
fun emta ((ENTER(a,p),p1),
(LAMBDA(MOVE(a1,a2)),p2)) = (TAKE(a2,p),PAR(p1,p2))
| emta ((LAMBDA(MOVE(a1,a2)),p2),
(ENTER(a,p),p1)) = (TAKE(a2,p),PAR(p1,p2))
| emta (_,_) = raise emtaex

(*Handle possible tau/give/take/exit/enter transitions by *)
(* comparing two lists of (action * prex) tuples *)
fun ttau l1 [] = []

| ttau [] l2 = []
| ttau l1 l2 =
let
val p1 as (a1,pr1) = hd l1
val p2 as (a2,pr2) = hd l2

in
(*case sync ((directed) action/coaction) Move/comove is *)
(*handled in a second scan, as the comove actions are "born" *)
(*in this first scan. *)
if ca(p1,p2)

then ((LAMBDA(ACTION(TAU))),(pr1||pr2))::
(ttau l1 (tl l2))@(ttau (tl l1) l2)

(*case coMOVE *)
else if isee(p1,p2)
then (eeca(p1,p2))::(ttau l1 (tl l2))@(ttau (tl l1) l2)
(*Case give *)
else if isem (p1,p2)
then (emga(p1,p2))::(ttau l1 (tl l2))@(ttau (tl l1) l2)
(*Case take *)
else if isenm(p1,p2)
then (emta(p1,p2))::(ttau l1 (tl l2))@(ttau (tl l1) l2)

else
(ttau l1 (tl l2))@(ttau (tl l1) l2)

end

(*Remove a move action from an expression. Used in comp *)
fun rml prex =
(case prex of

cp as (PAR (p1,p2)) => PAR((rml p1),(rml p2))
| cp as (PREFIX (la,p1)) =>

(case la of
m as MOVE(a1,a2) => rml p1

| _ => cp)
| cp as (SLOT (n,r)) =>

(case r of
EMPTY => SLOT(n,EMPTY)

| RESOURCE p => SLOT(n,RESOURCE(rml (res2prex r))))
| cp as (REST (r,p1)) => REST(r,(rml p1))
| cp as (REP (p1)) => REP(rml p1)
| cp as (PROCESS (s)) => cp
| cp as NIL => cp)

(*Take a (pi,prex) list and compare the tuples. If two tuples *)
(*contain a move/comove pair, then synchronize *)
fun comp [] = []

| comp ((pi,prex)::[]) = []
| comp (prlist as (pi,prex)::prexs) =

let
(*Is the tuple pair move/comove? *)
fun ismc ((LAMBDA(MOVE(a1,a2)),p1),
(coMOVE(a3,a4),p2)) = a1 = a3 andalso a2 = a4
| ismc ((coMOVE(a3,a4),p2),
((LAMBDA(MOVE(a1,a2)),p1))) = a1 = a3 andalso a2 = a4
| ismc (_,_) = false

in
if ismc ((pi,prex),(hd prexs)) then
(LAMBDA(ACTION(TAU)), (rml prex))::
(comp ((pi,prex)::(tl prexs)))@(comp prexs)

else (comp ((pi,prex)::(tl prexs)))@(comp prexs)
end

(*Helper functions that returns expressions in the correct order. *)
fun par p1 (pi,p2) = (pi,PAR(p1,p2))
fun rpar p1 (pi,p2) = (pi,PAR(p2,p1))

(*This function takes a (pi, prex) tuple and returns pi * prex with *)
(*the associated address n. It only returns beta values, i.e. *)

13

(*possible transitions from within a slot. *)
fun nest n [] = []
| nest n ((pi,prex)::ps) =

(case pi of
LAMBDA la =>

(case la of
DIRAC (l,add) => (LAMBDA(DIRAC((l), n::add)),
SLOT(n,RESOURCE(prex)))::(nest n ps)

| MOVE (a1,a2) => nest n ps
| ac as ACTION a =>

(case a of
ACNAME a => (LAMBDA(DIRAC(ac,n::[])),

SLOT(n,RESOURCE(prex)))::(nest n ps)
| coACNAME a => ((coDIRAC(ac,n::[])),
SLOT(n,RESOURCE(prex)))::(nest n ps)

| TAU => ((LAMBDA(ACTION(TAU))),
SLOT(n,RESOURCE(prex)))::(nest n ps)))

| coDIRAC (lam, add) => ((coDIRAC(lam, n::add)),
SLOT(n,RESOURCE(prex)))::(nest n ps)
| coMOVE (a1,a2) => ((coMOVE(n::a1, n::a2)),
SLOT(n,RESOURCE(prex)))::(nest n ps)
| ENTER (a,p) => (ENTER(n::a, p),

SLOT(n, RESOURCE(prex)))::(nest n ps)
| EXIT (m,a,p) => (EXIT(m, n::a, p),

SLOT(n, RESOURCE(prex)))::(nest n ps)
| TAKE (a,p) => nest n ps
| GIVE (m,a,p) => nest n ps)

(*val opens = fn : (pi * prex) list -> (pi * prex) list *)
(*This function handles open I/II of the transition rules. The *)
(*restricted names should not be the same as free names of the *)
(*EXIT/ENTER constructor. *)
fun opens [] = []

| opens ((pi,REST(rest,prex))::ps) =
(case pi of

EXIT (n,a,p) => ((EXIT(rest@n,a,p)),prex)::(opens ps)
| GIVE (n,a,p) => ((GIVE(rest@n,a,p)),prex)::(opens ps)
| _ => (pi,REST(rest,prex))::(opens ps))

| opens ((pi,prex)::ps) =
(case pi of

EXIT (n,a,p) => ((EXIT(n,a,p)),prex)::(opens ps)
| GIVE (n,a,p) => ((GIVE(n,a,p)),prex)::(opens ps)
| _ => (pi,prex)::(opens ps))

(*Remove redundant expressions from a composite expression *)
fun rmprex p prex =

(case prex of
cp as (PAR (p1,p2)) => if p = cp then NIL

else PAR((rmprex p p1),(rmprex p p2))
| cp as (PREFIX (l,p1)) => if p = cp then NIL

else if p = p1 then rmprex p p1
else cp
| cp as (SLOT (n,r)) => if p = cp then NIL

else if p = (res2prex r) then
(SLOT(n,RESOURCE((rmprex p (res2prex r)))))

else cp
| cp as (REST (r,p1)) => if p = cp then NIL

else if p = p1 then (REST(r,(rmprex p p1)))
else cp
| cp as (REP (p1)) => cp
| cp as (PROCESS (s)) => if p = cp then NIL else cp
| cp as NIL => NIL)

(*Remove NIL exp. from prex. Rule E1 of structural equivalence.*)
fun rmnil prex =

let
fun rmn prex =

(case prex of
cp as (PAR(NIL,NIL)) => NIL

| cp as (PAR (p1,NIL)) => rmn p1
| cp as (PAR(NIL,p1)) => rmn p1
| cp as (PAR(p1,p2)) =>

let
val pr1 = rmn p1
val pr2 = rmn p2

in
PAR(pr1,pr2)

end
| _ => prex)

in

14

(rmn prex)
end

(*Find the replications in an expression and return them. *)
(*This is used when "cleaning up". The redundant replicated *)
(*processes are later removed (fun clean) *)
fun findrep p =

(case p of
PAR(p1,p2) => (findrep p1)@(findrep p2)

| REST(n,p) => (findrep p)
| REP(p) => p::[]
| SLOT(n,r) => findrep (res2prex r)
| PREFIX(n,p) => findrep p
| PROCESS p => []
| NIL => [])

(*Find the restrictions in an expression and return them. *)
(*This is used when "cleaning up". The redundant replicated *)
(*processes are later removed (fun clean) *)
fun findrest p =

(case p of
PAR(p1,p2) => (findrest p1)@(findrest p2)

| REST(n,p) => REST(n,p)::[]
| REP(p) => findrest p
| SLOT(n,r) => findrest (res2prex r)
| PREFIX(n,p) => findrest p
| PROCESS p => []
| NIL => [])

(*Remove duplicate prexes (given in a list) from a prex *)
fun rmpl pl prex =

if not (null pl) then
rmpl (tl pl) (rmprex (hd pl) prex)

else prex

(*Remoce NIL and duplicates from (pi * prex) expressions *)
fun rmpil [] = []

| rmpil ((pi,p)::[]) = (pi, (rmnil (rmpl (findrep p) p)))::[]
| rmpil ((pi,p)::prexs) = (pi,(rmnil (rmpl (findrep p) p)))::(rmpil prexs)

(*Clean a (pi * prex) list by removing duplicate transitions *)
fun cltrans [] = []

| cltrans ((pi,prex)::[]) = (pi,prex)::[]
| cltrans ((pi1,p1)::prexs) =
let
val pr = tl prexs
fun neq a1 a2 = not (a1 = a2)

in
(pi1,p1)::(cltrans (List.filter (neq (pi1,p1)) prexs))

end

(*Scope extension. Rule E5 in rules for structural equivalence *)
exception scopeex of string
fun scopeext (prex as PAR(REST(n1,p1),REST(n2,p2))) =

if not (cln n1 (frn p2)) andalso not (cln n2 (frn p1)) then
REST(n1@n2,PAR(p1,p2))

else prex
| scopeext (prex as PAR(REST(n,p1), p2)) =
let

val pr1 = scopeext p1
val pr2 = scopeext p2

in
if not (cln n (frn p2)) then

(REST(n,PAR(pr1, pr2)))
else prex

end
| scopeext (prex as PAR(p2,REST(n,p1))) =
let

val pr1 = scopeext p1
val pr2 = scopeext p2

in
if not (cln n (frn p2)) then

(REST(n,PAR(pr1,pr2)))
else prex

end
| scopeext (prex as (PAR(p1,p2))) =
let

val pr1 = scopeext p1
val pr2 = scopeext p2
val pr = PAR(pr1,pr2)

15

in
if pr = prex then

pr
else (scopeext pr)

end
| scopeext p = p

exception transiexception of string
(*This transition function examines possible transitions in a *)
(*prex and returns a (pi * prex) list *)
(*case par. *)
fun transi (PAR(p1,p2)) =

let
val pr1 = transi p1
val pr2 = transi p2
val l = (ttau pr1 pr2)@(map (par p1) pr2)@

(map (rpar p2) pr1)
val l2 = cltrans (comp l)

in
l@l2

end
(*case prefix*)
| transi (PREFIX(l,r)) =
(case l of

ACTION a => (LAMBDA(ACTION(a)),r)::[]
| DIRAC (l,a) => (LAMBDA(DIRAC(l,a)),r)::[]
| MOVE (a1,a2) => (LAMBDA(MOVE(a1,a2)),r)::[])

(*case rest*)
| transi (REST(r,p)) =

let
fun rest n (pi,pr) = (pi,REST(n,pr))
val ps = transi p
val psr = map (rest r) ps

in
opens (cpn r psr)

end
(*case rep*)
| transi (REP p) =

let
(*rmprex and rmnil *)
fun clean l (pi,prex) = (pi,(rmnil (rmprex l prex)))
(*clean a (pi,prex) list *)
fun cleanpl l prexs = cltrans (map (clean l) prexs)
val l = transi (PAR(PAR(p,p),p))
val cl = cleanpl p l

in
if l<>[] then map (rpar (PAR((REP p),p))) cl
else []

end
(*case nesting, enter, exit *)
| transi (s as SLOT(n,r)) =

(case r of
EMPTY => (ENTER(n::[],NIL),SLOT(n,EMPTY))::[]

| RESOURCE p => let
val l = transi p
val l’ = cbp l

in
((EXIT([],n::[],(res2prex(r)))),
(SLOT(n,EMPTY)))::(nest n l’)

end)
| transi (PROCESS p) = []
| transi (NIL) = []

(*Putting it all together *)
fun t p = cltrans (rmpil (transi (scopeext p)))

(*Same as above, with infixed composition *)
fun tr p = (((cltrans o rmpil) o transi) o scopeext) p

(*A counter. Not used.*)
fun count n =

let
val p = 1
fun ct n m =

if (n >= m) then
(print ((Int.toString m) ˆ "\n"); (ct n (m+1)))

else print "";
in
ct n p

end

16

