.-ﬁ
=

The IT University

of Copenhagen

An Implementation of the MR Calculus
Theory Department, | T University of Copenhagen

Jens Christian Godskesen (jcg@it.edu)
Thomas Hildebrandt (hilde@it.edu)
Sgren Eduard Jacobsen (sej@it.edu)

IT University Technical Report Series TR-TR-2002-14
ISBN 87-7949-017-4

Copyright © ,

Jens Christian Godskesen (jcg@it.edu)
Thomas Hildebrandt (hilde@it.edu)
Sgren Eduard Jacobsen (sej@it.edu)

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN 87-7949-017-4

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67

DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www. i t-c.dk

Abstract

We demonstrate a simulator for the Mobile Resource Calculus (MR), called MRsim. First, an overview of the
syntax and semantics of MR is given, along with an explanation of how the calculus isimplemented. The second part
of the paper gives an example of how the simulator is used.

1 Introduction

This paper describes an implementation of a mobile calculus called the “Calculus of Mobile Resources” (MR), as
described in [1]. Actually, only a subcalculus is implemented where slots cannot be deleted. Another difference is
that the paths referring to slots are reversed. The program - written in Standard ML - is called MRsim, for Mobile
Resource Simulator. The paper also gives an overview of the syntax in order to justify the datatype design, but is not
meant to give a full introduction to MR. For details on this, see [1]. The source code is included in the appendix. It is
recommended to have MRsim running while reading this document.

1.1 An Example Session

To run MRsim, you must have a Standard ML compiler/interpreter installed. MRsim has been written using Moscow
ML?Z, but any Standard ML implementation should do. This example is only meant to give a feel for the MRsi m
system, the interesting features of MR (e.g. mobility) are introduced later in this paper. Start up an interactive session
and apply the file “mr.sml” by typing:

- use "nr.sm";

This will load the datatypes and functions needed to define MR expressions, pretty-print them, and run the transition
functions. There are also a number of examples available (given in the file “examples.sml”). The pre-defined variable
el holds the expression a.0 | @.0. If you type

- el
at the prompt, you get:
>val it =
PAR(PREFI X(ACTI ON(ACNAME "a"), NIL), PREFI X(ACTI ON(COACNAME "a"), NIL)) :
prex

which is an abstract representation of the data, see section 1.2 for more detail on this. For a more human-readable
form, try:

- pp el;
which will yield
>val it ="a.0/"a.0" : string

Notice that the prefixed “* ” means co-action. There are several i)retty_—printir)g functions available, see section A for
details. The transition functiont will return a tuple list of possible actions paired with the resulting expressions:

-t el
>val it =
[(LAVBDA(ACTI ON TAU), NIL),
(LAVBDA(ACTI ON(COACNAME "a")), PREFI X(ACTI ON(ACNAME "a"), NIL)),
(LAVBDA(ACTI ON(ACNAME “a")), PREFI X(ACTI ON(COACNAME “a"), NIL))]
(pi * prex) list
To render the output more readable, use the pretty-print function ppal on the output:
- ppal it;
(tau, 0)
("a, a.0)
(a, "a.0)
>val it = () : unit

Where i t is used to reference the last output by the command-line interpreter.

10btainable from http://www.dina.kvl.dk/~sestoft/mosml.html

1.2 Syntax and Datatypes

The sets P of process expressions is defined by:

pg == Olnlr][Ap|pllqllp|(m)p (P) @
r o= e|p 2

In M si m this is implemented as follows:

dat atype prex =

NI L (*Enpty Construct or *)
| SLOT of rnane * res (*SLOT is a resource (slot) *)
| PREFI X of |anmbda * prex (*prefix "action' constructor *)
| PAR of prex * prex (*PAR parallel (||) constructor *)
| REP of prex (*Replication (!) *)
| REST of rest * prex (*Restriction *)
| PROCESS of string (*PROCESS (atonic) constructor *)
and res =
EMPTY (*slots can be enpty, ready to *)
| RESOURCE of prex (*accept a resource. *)
The prefix A is defined by:
A = alp 3)
p = ad|do>d 4)

which define the set £ of labels. The actions « play the same role as in CCS [2], and ¢ is a direction path. Labels are
implemented in conjunction with the above:

and | anbda =

ACTI ON of action (*ACTION is the action prefix *)
| DI RAC of |anbda * addr (*Directed action *
| MOVE of addr * addr (*MOVE wi Il be infixed > *)

and action =

ACNAME of string
| coACNAME of string
| TAU

The datatypes for the MR grammar are the following: We have a datatype prex that models the grammar in 1 and
2, with constructors for parallel, replication, etc. and a datatype lambda that models the labels in 3 and 4. Note that it
is possible to name processes with the PROCESS constructor, though it is not defined in the MR grammar. The lambda
datatype has a “helper” datatype called act i on, defined by:

action z=al|a|r (5)

The grammar in 5 is for distinguishing between actions and co-actions, 7 is the silent action. This representation yields
an abstract syntax, where the process expression
a.P|a.Q

is represented in the form:

PAR(PREFIX(ACTION(ACNAME "a”), PROCESS "P”), PREFIX(ACTION(coACNAME "a”), PROCESS "Q")),
which is a tree structure, see figure 1. There are several shortcuts to construct MR expressions: An infixed backslash
(\) between a lambda and a process constructs a PREFIX. Two vertical bars (||) between processes constructs a PAR,
and a prefixed bang (!) constructs REP (replication).

@ @

Figure 1: Abstract Syntax Tree

1.2.1 Datatypes for Prefixes
The pi datatype is defined by:

7 u= T|Aad|d>d|(R)E>ip| >Iip|d>ip|(R)>I:p (6)

The constructors that correspond to 6 are: TAU, ACTION, DIRAC/coDIRAC, MOVE/coMOVE, EXIT, ENTER,
TAKE and GIVE.

The transition semantics in Table 2 also defines a subset hereof, called 3, to distinguish the outgoing actions from
as slot. The 3 datatype is not defined in MRsi m a function (called nest) is used to recognize the allowable transitions
from within a slot.

1.3 Structural Equivalence

E: pllo=p Es (n)0=0 E: p=pl'p
E: pllg=qllp Es (mpllp'=@)@lp)ifn¢)
Es (o) " =pll@ 1P") Es (n)mlp] =m|(n)pl,ifn#m

Table 1: Structural equivalence.

The rules in Table 1 are implemented as follows: Rule E; is handled by the process expression r i | in mr.sml.
Note that the function does not neccesarily remove all NIL in a function. Rules E5 and E3 are handled by the function
transi . Rule E, is not handled, but does not affect outcomes of transitions. Rule Es is handled by the function
scopeext , which transforms an expression to a normal form. This is done before applying the transition function.
Rule Fj is not handled, it is up to the user to bring an expression to normal form. Rule E is handled int r ansi (case
REP).

1.4 Transitions

The transition rules are defined in Table 2. The t r ansi function takes an expression of type pr ex and returns a
(pi * prex) list of possible transitions. The rules prefiz, rest, rep, par, sym, enter and exit are handled directly in
t ransi . Rules openI/II are handled in the function opens. Rules co — move, give and take are handled by the
function t t au, which is called from t r ansi ’s PAR case. The nesting rule is handled by nest , which recognizes
allowable transitions from within slots (8 actions). The move/co-move synchronization (rule sync) is handled in
the function conp, as co-moves can be “born” by an exit/enter pair, thus requiring a second scan of the resulting
transitions. Table 3, contains the MRsim syntax for transitions, i.e. how the output from the program should be read.

U ™ U
— Ip —
(prefiz) Y (rest) L p L - n & fn(m) Ubn(m) (rep) pll pw ’p
p——p (n)p — (n) p—p
(#)op:q 4 (A)>d:q 4
p —p ~ p — p .
(open 1) —L—— P € (a)\((8) U) (open 1) —2—— L € fa()\(fn(6) U)
q g (ni)>6:q 4
(np —"p (np —"p
s U ™ U
BLEY =
(par) —L g by =0 (sym) LI LN
plla—7rl4q allp—qllp
o PSR i e
(give))oTa fa(p2) N =0 (take) 51>a 7
pillpe "= (0 | pa) pillp2 = p1ll p2
A -)61 : [P
B p T _ e T _
(sync) ————————fn(p2) N =0 (co — move) oo — falp2) N =0
p1llp2 — (@) (p1 || p2) p1 || p2 "5 (3)(p1 || p2)
p -y
(nesting) n & bn(B) (enter) (exit)

nlp] Z5 nly'| nle] 2% np| nlp] F nle]

Table 2: Transition rules.

>d:P = Enter action, direction path d and process P
(n)'d >: P Exit action, with restriction n, direction path d and process P

d>:P = Takeaction with direction path d and process P
(n) >’d:P = Giveaction with restriction n, direction path d and process P
a— >b = Moveaction, from location at address a to location at b
'a—>b = coMove action, from location at address a to location at b
tau = tau, thesilent action

Table 3: Transition syntax in MRsim

1.5 Restrictions

Restrictions are handled by an number of functions:

cbp: Compare 3 and = from a tuple list, and return the list where g = .

f I n: Find free names in A prefixes.

cn: Compares a list of binding names with a list of prex’s and returns the prex’s that do not contain the bound names.
cl n: Compares two lists. If a member of one list is equal to a member of the other list, return true, else return false.
cpn: Compares a list of bound names with free names of = froma (pi * prex) tuple list. Only returns tuple if =
does not contain bound names from the given list.

f r n: Finds free names of prexs and actions.

2 Examples
2.1 Alice, Bob, Desk

We apply MRsi mto the first example given in [1], where the object is to move a resource C from Alice to Bob, where
Alice and Bob do not know the names of each others’ slots.

2.1.1 Move resource from Alice to Bob

The example contains the Alice, Bob, Desk processes, given by:

Alice (a)(a|C] | Alice")
Bob = (b)(b|e] | Bob')
Desk = Id|e|
P = Alice| Bob| Desk
The example is provided in the file “examples.sml”. Alice’ is given by
Alice’ = ard.0
Run the transition on P, by typing
-t P
which yields a (pi * prex) tuple list with the possible transitions. To get a more readable format of the list, type
- ppal it;
which yields (numbered here for convenience):
- ppal it;
1) (>d:0, (a.b)(a[C]|a->d.0|b[]
2) (d>:0, (a.b)(0|!d[]|d[]]a[C]
3) ((a.b)y>d:C a[]|b[]]d->h.0

|
4) (tau, (a.b)(a[]]0|b[]]0]0O|!d
>val it = () : unit

-010]td[]]d[]))

| d->b
[0] b[]]d->b.0))
td[])
[11diq))

This produces the number of possible transitions and the resulting expression derived from P, given as a 2-tuple list.
The first transition (labelled 1 here, for convenience) is an enter action, indicating that the slot d is ready to accept a
resource. The second transition is a take, derived from a an enter (labelled 1 in the above) and a co-move, which is
not visible to the user, because of restrictions on a and b. The third transition shows the resource C exiting it’s slot a.
Because of the open rule, this exit action now “carries” the restrictions a and b. The final transition is a silent action
tau, which is the result of synchronization between the move action and a hidden co-move. It is up to the user to decide
which transition best expresses what he is trying to model. In this case, it is the tau transition. Note that the restriction
notation uses a dot (.) to separate restriction names.
In MRsim, slots should in principle all be restricted toward the environment, to prohibit an arbitrary number of pro-
cesses from entering the slots, producing ent er actions, (and t ake if a nove action is present). If this is not the
case, then as illustrated above we only choose to insert the inactive process NI L.

In our running example, we now wish to move the resource C'to b, i.e. so C'is in Bob’s possesion, in the slot b. As
a practical measure, we set a restriction on the slot d, to hide enter actions from the replicated slot d. We also hide the
exit action from slot d[C], which combined with an enter action would produce a co-move. We do this by definfing:

Bob' = dpb.S
so we have
P' = (a.b.d)(A'||Bob||d > b.S||d|C]||\d|e])

Running this through MRsim, we get:

- ppal (t P");
(tau, (a.b.d)(S|!d[]|d[]|a[]]S|b[C]]S))
>val it = () : unit

The resource C has been moved from slot d to slot b. The user only observes the silent action tau, the “details” are
hidden by restrictions.

2.1.2 Synchronous Communication

Suppose Bob wants to communicate with the resource C, which resides in the slot b. He does this by using a directed
action, which is an action that holds information of the the address that the action is supposed to have effect. We
define:

Bob" = @b.Bob"
cC = cC
which gives us:
P" = (a.b.d)(A'|[eb.Bob"||blc.C"|||\d|e])
The transition function returns:
- ppal (t P);
(tau, (a.b.d)(S[!'d[]la[llS|b[C]]S))
>val it = () : unit

Which shows us that Bob has communicated with the resource C, resulting in a silent action. Had we lifted the
restriction d, we would of course have seen the action/co-action in the output. To finish the example, we demonstrate
movement from an arbitrarily deep sub-location to an empty slot at another location: If we have

Bob" = c'br>d.Bob"
c = d|C]
we get the expression:
P" = (a.b.d)(A||c'b>d.Bob"||b|c.[C"]]||!d|e])
Reducing this in MRsim gives us:
- ppal (t P"7);
(tau, (a.b.d)(Sla[]|S|b[c []]IS|O]td[]]d[C]))

>val it = () : unit

Resource Chas moved from the location atb. ¢’ toc.

2.2 Conclusion and Further Work

We have given a program which makes it possible to do automated transitions on expressions in the Mobile Resource
Calculus. There are several possible enhancements, eg. resolving the limitation of closed slots. However, the most
interesting enhancements MRsim would be implementing something similar to the Mobility Workbench [3], where it
is possible to compare transitions, show bisimulation, equivalence, etc.

References

[1] Godskesen, Hildebrandt and Sassone: A Calculus of Mobile Resources, submitted to CONCUR (2002)
[2] Robin Milner: Communication and Concurrency, Prentice Hall (1989)

[3] Bjorn Victor and Faron Moller: The Mobility Workbench — A Tool for the 7-Calculus, Department of Computer
Systems, Uppsala University, Sweden (1994), Also available as Technical Report ECS-LFCS-94-285, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of Edinburgh, UK

A List of Functionsand Their Datatypes

This list is not exhaustive, but represents some functions that are either essential for “operating” MRsim, or is a main
helper function, though not usually called from the interactive environment.

(*Pretty-print a process expression*)
val pp : prex -> string
(*Pretty-print a list of prex's *)

val pl : prex list -> string |list
(*Pretty-print (pi*prex) list (= output fromtransition function) *)
val ppal : (pi * prex) list -> unit

(*Find tau, exit/enter, givel/nove, take/nove *)

val ttau = fn : (pi * prex) list -> (pi * prex) list -> (pi * prex) list
(*Transition function *)

val t =fn: prex -> (pi * prex) list

Prex.sig

signature Exp =
sig

type rname = string
type addr = rname list

type rest rname list
datatype prex =
PAR of prex * prex (*PAR parallel (]]) constructor
| PREFIX of lambda * prex (*prefix “action” constructor
] SLOT of rname * res (*SLOT is a resource (slot)
| REST of rest * prex (*Restriction
] REP of prex (*Replication (1)
| PROCESS of string (*PROCESS (atomic) constructor
| NIL (*Empty Constructor
(*Prefix datatype and constructors
(*Syntax:
L ::=a | r
C*r z:= ad | d>d”
and lambda =
ACTION of action (*ACTION is the action prefix
| DIRAC of lambda * addr (*Directed action
| MOVE of addr * addr (*MOVE will be infixed >~
(* Resource expressions.
(* Syntax:
r 1= dlp
and res =
EMPTY (*slots can be empty, ready to accept
| RESOURCE of prex (*a resource.
(*Action datatype. (Action, coaction and tau)
(*Syntax:
(*action ::= a]’altau

and action
ACNAME of string
] coACNAME of string
| TAU

(*Pi datatype - am | failing to find meaningful names? :-)
(*This is a conservative extension of the above datatype
(* pi::=tau]lambda | codirac | comove | exit | enter | give | take
datatype pi =

LAVBDA of lambda

coDIRAC of lambda * addr

CcoMOVE of addr * addr

EXIT of rest * addr * prex

GIVE of rest * addr * prex

ENTER of addr * prex

TAKE of addr * prex

exception ppcex of string

val prac : action -> string

val pradd : string list -> string
val prl : lambda -> string
val prpi : pi -> string

val pp : prex -> string

val pl : prex list -> string list
val ppa o (pi * prex) -> string
val ppal : (pi * prex) list -> unit
val || : prex * prex -> prex

|
val \ : lambda * prex -> prex
!

val I prex -> prex

end
Prex.sml
(*Prex.sml Sgren E. Jacobsen 2001-11-19 *)
(*This file describes the environment for the *)
(*smart card calculus. *)

structure Prex : Exp =

struct
type rname = string
type addr = rname list
type rest = rname list

»;

*)
*)

exception Action
exception Frn

datatype prex =

PAR of prex * prex (*PAR parallel (]]) constructor
| PREFIX of lambda * prex (*prefix “action” constructor
] SLOT of rname * res (*SLOT is a resource (slot)
| REST of rest * prex (*Restriction
] REP of prex (*Replication (1)
| PROCESS of string (*PROCESS (atomic) constructor
| NIL (*Empty Constructor
(*Prefix datatype and constructors
(*Syntax:
L z:=a] r
C*r z:= ad | d>d”
and lambda =
ACTION of action (*ACTION is the action prefix
| DIRAC of lambda * addr (*Directed action
| MOVE of addr * addr (*MOVE will be infixed >~
(* Resource expressions.
(* Syntax:
r 1= dlp
and res =
EMPTY (*slots can be empty, ready to accep
| RESOURCE of prex (*a resource.
(*Action datatype. (Action, coaction and tau)
(*Syntax:
(*action ::= a]’altau

and action =
ACNAME of string
] coACNAME of string
| TAU

(*Pi datatype - am | failing to find meaningful names? :-)
(*This is a conservative extension of the above datatype
(* pi::=tau]lambda | codirac | comove | exit | enter | give | take
datatype pi =

LAMBDA of lambda

coDIRAC of lambda * addr

CcOoMOVE of addr * addr

EXIT of rest * addr * prex

GIVE of rest * addr * prex

ENTER of addr * prex

TAKE of addr * prex

(* Declare the infix operator "||" that represents
(* parallel composition *)
val || = PAR

(* lambda binds to the right, has higher precedence
(* than parallel
val \ = PREFIX

(*Let *!” denote replication. Implicitly prefixed.
val ! = REP

(*Pretty-print an action *)

fun prac (ACNAME(S))
| prac (coACNAME(s) Tt T s
| prac TAU = "tau"

1
%)

(*print address *)

fun pradd [1] ="
| pradd (s::[1) = s
| pradd (s::xs) =

(*print prefix (lambda) *)
fun pri 1 =
case | of
ACTION a => (prac a)
] DIRAC (a,D) = prl a~ "." 7 pradd 1
| MOVE (s1, s2) => pradd s1 = "->" = pradd s2

exception ppcex of string
(*Pretty-print an MR-expression *)
fun pp prex =
(case prex of
PAR (el, e2) => (pp el) = "|" ~ (pp €2)
| PREFIX (I, a) = prl 1 = "." T ppa
] SLOT (r, €e) =>

™)

*

*)

*)

*)

*)

(case e of
EMPTY = r -
] RESOURCE e =>r ~
] PROCESS s
| REST (r,a)
| REP p

| NIL =

= "

"
"I " ppe " 1)
=S

=> "(" " pradd r ©
“ppop

(*Pretty-print pi *)

fun prpi pi =
(case pi of
LAMBDA 1 = prl
] coDIRAC (a,l)
] coMOVE (sl1,s2)
| EXIT (n,a,p)
if (null n) then
"7~ pradd a ~
else
“(" 7 pradd n
| GIVE (n,a,p)
if (null n) then

"

[

1

= prl a ™~ ".""
—s e

==

~ pradd

" ppp

pp

~ pradd a © ">:"

==

NG

p

pp a

~ pradd s1 © "->" 7 pradd s2

'>”" = pradd a =
else
“(¢" 7 pradd n ©
| ENTER (a,p)
| TAKE (a,p)

"Toppp

*)>>" 7 pradd a ~
=> ">" " pradd a ~
=> pradd a = ">:"

“ppp
Mt T ppp
pp p)

(*Print a prex list *)

fun pl 1 map pp 1

(*Pretty-print a (pi, prex) tuple*)

fun ppa (a,p) = "(C" 7 (prpi @ ", "7 (pp p) T)"

(*Pretty-print an (pi, prex) tuple list*)
fun ppal []]
I ppal (list as (1::1s))
let
val 1” = ppa I
in
print (1 ~
ppal Is
end
end

“\n"y;

mr.sml

(*File mr_sml *)

(*Sgren E. Jacobsen, 2001-10-31%*)
(*Updated 2001-11-06*)

(*Transitions for the MR-calculus.*)

use "Prex.sig";
use "Prex.sml";
open Prex;

infix 5 ||;
infixr 6 \;

use "examples.sml™;

fun res2prex (RESOURCE(res)) = res
| res2prex _ = NIL

(*val cbp : (pi * "a)
(*Compare Beta and Pi
(*where pi="b *)

list -> (pi * “a) list *)
from (pi,prex) list, and return the tuple list *)

fun cbp [1 =[O
] cop I = let val (pi,p) = hd 1
in
case pi of
LAMBDA la =
(case la of
ACTION a => (pi,p)::(cbp (tl 1))

] DIRAC (lam,add) => (pi,p)::(cbp (tl 1))
|

=> cbp (tl 1))
coDIRAC (lam, add) => (pi,p)::(cbp (tl 1))
cOMOVE(addl, add2) => (pi,p)::(cbp (tl D))
=> (pi,p)::(cbp (tl 1))

ENTER (add)
EXIT (add) => (pi,p)::(cbp (tl 1))

=> cbp (tl I)

10

end

(*Free names in lambda prefixes *)

fun fIn (LAMBDA(ACTION(ACNAME(S)))) = s::[1
| fIn (LAVBDACACTION(COACNAME(S)))) = s::[1
| fIn (LAMBDA(ACTION(TAU))) =N
| fIn (LAMBDA(DIRAC(I,a))) = (fIn (LAMBDA(I)))@a
| fIn (LAMBDA(MOVE(al,a2))) = al@a2
| fIn (coDIRAC(I,a)) = (fIn (LAMBDA(I)))@a
| fIn (coMOVE(al,a2)) = al@a2
| fIn (EXIT(n,a,p)) = a
| fIn (GIVE(n,a,p)) = a
| fIn (ENTER(a,p)) = a
| fIn (TAKE(a,p)) = a

(*Compare each member of bns (bound names) with each member of 1 *)
(*and return members of I not equal to bns *)
fun cn bns [1 = [

len[dys =ys
| cn bns ys =
let
funeqg xy =x =y
in

if List.exists (eq (hd ys)) bns
then cn bns (tl ys)
else (hd ys)::(cn bns (tl ys))
end

(* Compare two lists. If a member of one list is equal to a member in *)
(* the other list, return true, else false *)
fun cln xs [] = false
| cin [1 ys = false
] cln xs ys
let funeqxy =x=y
in
List.exists (eq (hd xs)) ys orelse cIn (tl xs) ys
end

(*Compare a name with names in a list. If name exists, return true
fun cpbn bn [] = false
] cpbn bn xs =
let fun eqgq Xy = x =y in
List.exists (eq bn) xs

end
*)
(*val "a cpn = fn : string list -> (pi * ”a) list -> (pi * 7a) list *)
(*Compare a list of bound names (bn) with free names of pi from *)
(*(pi,prex) tuple list. Only return tuple if pi does not contain *)
(*bound names from bn. *)
fun cpn [1 xs = xs

| cpn bn [1 = [1

| cpn bn xs =

let

val (pi,pr) = hd xs
val fnpi = fIn pi
in if cln bn fnpi
then cpn bn (tl xs)
else (pi,pr)::(cpn bn (tl xs))
end

(*Find free names of processes, actions and actions *)
exception frnex of string
fun frn (PREFIX(a,p))
| frn (PAR(p1l,p2)) (frn p1)@(frn p2)
] frn (SLOT(n,EMPTY)) n::[1
| frn (SLOT(n, (RESOURCE(P)))) = n::(frn p)
| frn (REST(n,(P))) =
let
val ps = frn p
in
(cn n ps)
end
frn (REP(p))
frn (PROCESS(p))
frn NIL

(fIn (LAMBDA(2)))@(frn p)

frn p

p::[]

1

(*Compare Actions in an (pi,prex) tuple. Do two *)

(*actions correspond (action/coaction) to each other? *)
fun ca ((LAMBDA(CACTION(ACNAME(acl))), p),

11

(((LAMBDACACTION(COACNAME(ac2)))).p2))) = (acl = ac2)
| ca ((LAMBDA(ACTION(COACNAME(ac1))), p).
((LAMBDA(ACTION(ACNAME(ac2)))) ,p2)) = (acl = ac2)
| ca ((LAMBDA(DIRAC(I1,a1)),pl),(coDIRAC(12,a2),p2)) =
ca ((LAVMBDA(I1),pl), (LAMBDA(12),p2)) andalso al = a2
| ca ((LAMBDA(DIRAC(ACTION(ACNAME(acl)),ad1)), p).,
(((LAMBDA(DIRAC(ACT ION(COACNAME(ac2)) ,ad2))),p2))) =
(acl = ac2) andalso (adl = ad2)
| ca ((((LAMBDA(DIRAC(ACTION(COACNAME(ac2)),ad2))),p2)).,
(LAMBDA(DIRAC(ACTION(ACNAME(acl)),ad1)), p)) =
(acl = ac2) andalso (adl = ad2)
] ca ((coDIRAC(I1,al),pl),
(LAMBDA(DIRAC(12,a2)),p2)) =
ca ((LAMBDA(I1),p1),(LAMBDA(I2),p2)) andalso al = a2
| ca (((LAMBDA(MOVE(al,a2)),p)),
(coMOVE(a3,a4),p2)) = al = a3 andalso a2 = a4
| ca ((coMOVE(a3,a4),p2),
((LAMBDA(MOVE(al,a2)),p))) = al = a3 andalso a2 = a4
| ca (_,) = false

(*Is the pi pair al and a2 an exit/enter pair? ¥*)
fun isee (((EXIT(n,al,p)),pl),
(ENTER(a2,p2),p3)) = not (cln n (frn p3))
| isee ((ENTER(a2,p2),p3),
((EXIT(n,al1,p)),pl)) = not (cln n (frn p3))
| isee (,)) = false

(*Insert a resource in a context *)
exception insconex of string
fun inscon (cm as coMOVE(al,a2)) pl p2 =
(case pl of
SLOT(n,r) => if n = (hd a2) then SLOT(n,RESOURCE(p2))
else SLOT(n,r)
| PAR(pri,pr2) => PAR((inscon cm prl p2),(inscon cm pr2 p2))
I p=>p
] inscon 1 pl p2 =
raise insconex (prpi I = " is not a coMove action')

exception eecaexception
(*Produce a comove action for an exit/enter pair *)
fun eeca ((EXIT(n,al,prl),pl), (ENTER(a2,pr2),p2))
let
val cm = coMOVE(al,a2)
in
ifn=1]
then (cm,PAR(pl, (inscon cm p2 prl)))
else
(cm,REST(n,PAR(pP1,p2)))
end
| eeca ((ENTER(a2,pr2),p2), (EXIT(n,al,prl),pl))
let val cm = coMOVE(al,a2)
in
itfn=1]
then (cm,PAR(p1, (inscon cm p2 prl)))
else
(cm,REST(n,PAR(p1,p2)))
end
| eeca (_,_) = raise eecaexception

(*1s the pi pair an exit/move pair? *)
fun isem ((EXIT(n,al,p),pl),
((LAMBDA(MOVE(a2,a3))),p2)) =
if (a1l = a2) andalso not (cln n (frn p2)) then true else false
| isem (((LAMBDA(MOVE(a2,a3))),p2),
(EXIT(n,al,p),pl)) =
if (al = a2) andalso
not (cln n (frn p2)) then true else false
| isem (,) = false

(*Produce a give action for an exit/move pair *)
exception eegaex
fun emga ((EXIT(n,al,p),pl),
(LAMBDA(MOVE(a2,a3)),p2)) = (GIVE(n,a3,p),PAR(pl,p2))
] emga ((LAMBDA(MOVE(a2,a3)),p2),
(EXIT(n,al,p),pl)) = (GIVE(n,a3,p),PAR(p1,p2))
] emga (_,_) = raise eegaex

(*Is the pair an enter/move pair? *)
fun isenm ((ENTER(al,p),pl), ((LAMBDA(MOVE(a2,a3))),p2))

= 3)
] isenm ((LAMBDA(MOVE(a2,a3)),p2),(ENTER(al,p),pl)) = (a

(al = a
1 = a3)

12

| isenm (_,) = false

(*Produce a take action for an enter/move pair *)
exception emtaex
fun emta ((ENTER(a,p),pl),
(LAMBDA(MOVE(al,a2)),p2)) = (TAKE(a2,p),PAR(p1,p2))
] emta ((LAMBDA(MOVE(al,a2)),p2),
(ENTER(a,p),p1)) = (TAKE(a2,p),PAR(p1,p2))
| emta (_,_) = raise emtaex

(*Handle possible tau/give/take/exit/enter transitions by *)
(* comparing two lists of (action * prex) tuples *)
fun ttau 11 [1 = [
| ttau [1 12 = [
| ttau 11 12 =
let
val pl as (al,prl) = hd 11
val p2 as (a2,pr2) = hd 12

in
(*case sync ((directed) action/coaction) Move/comove is *
(*handled in a second scan, as the comove actions are ‘born" *)
(*in this first scan. *)
if ca(pl,p2)
then ((LAMBDA(ACTION(TAU))), (prillpr2))::
(ttau 11 (tl 12))@(ttau (el 11) 12)
(*case coMOVE *)
else if isee(pl,p2)
then (eeca(pl,p2))::(ttau 11 (tl 12))@(Cttau (tl 11) 12)
(*Case give *)
else if isem (pl,p2)
then (emga(pl,p2))::(ttau 11 (tl 12))@(Cttau (tl 11) 12)
(*Case take *)
else if isenm(pl,p2)
then (emta(pl,p2))::(ttau 11 (tl 12))@(ttau (tl 11) 12)
else
(ttau 11 (tl 12))@(ttau (el 11) 12)
end

(*Remove a move action from an expression. Used in comp *)
fun rml prex =
(case prex of
cp as (PAR (p1,p2)) => PAR((rml p1),(rml p2))
| cp as (PREFIX (la,pl)) =>
(case la of
m as MOVE(al,a2) => rml pl

I _=>cp)
| cp as (SLOT (n,r)) =>
(case r of
EMPTY => SLOT(n,EMPTY)

] RESOURCE p => SLOT(n,RESOURCE(rml (res2prex r))))
| cp as (REST (r,pl)) => REST(r,(rml pl))

I cp as (REP (pl)) => REP(rml pl)
| cp as (PROCESS (s)) => cp
| cp as NIL => cp)

(*Take a (pi,prex) list and compare the tuples. If two tuples *)
(*contain a move/comove pair, then synchronize *)
fun comp [1 = [
| comp ((pi,prex)::[1) = []
| comp (prlist as (pi,prex)::prexs) =
let
(*1s the tuple pair move/comove? *)
fun ismc ((LAMBDA(MOVE(al,a2)),pl),
(coMOVE(a3,a4),p2)) = al = a3 andalso a2 = a4
] ismc ((coMOVE(a3,a4),p2),
((LAMBDA(MOVE(al,a2)),pl))) = al = a3 andalso a2 = a4
| ismc (_,) = false
in
if ismc ((pi,prex),(hd prexs)) then
(LAMBDA(ACTION(TAU)), (rml prex))::
(comp ((pi,prex)::(tl prexs)))@(comp prexs)
else (comp ((pi,prex)::(tl prexs)))@(comp prexs)
end

(*Helper functions that returns expressions in the correct order. *)
fun par pl (pi,p2) = (pi,PAR(p1,p2))
fun rpar pl (pi,p2) = (pi,PAR(p2,pl))

(*This function takes a (pi, prex) tuple and returns pi * prex with *)
(*the associated address n. It only returns beta values, i.e. *)

13

(*possible transitions from within a slot.
fun nest n [] = []
] nest n ((pi,prex)::ps) =
(case pi of
LAMBDA la =>
(case la of
DIRAC (I,add) => (LAMBDA(DIRAC((I), n::add)),
SLOT(n,RESOURCE(prex)))::(nest n ps)
] MOVE (al,a2) => nest n ps
] ac as ACTION a =>
(case a of
ACNAME a => (LAMBDA(DIRAC(ac,n::[1)).
SLOT(n,RESOURCE(prex)))::(nest n ps)
] coACNAME a => ((coDIRAC(ac,n::[1)),
SLOT(n,RESOURCE(prex)))::(nest n ps)
| TAU => ((LAMBDA(ACTION(TAU))),
SLOT(n,RESOURCE(prex)))::(nest n ps)))
] coDIRAC (lam, add) => ((coDIRAC(lam, n::add)),
SLOT(n,RESOURCE(prex)))::(nest n ps)

| coMOVE (al,a2) => ((coMOVE(n::al, n::a2)),
SLOT(n,RESOURCE(prex)))::(nest n ps)
1 ENTER (a,p) => (ENTER(n::a, p),

SLOT(n, RESOURCE(prex)))::(nest n ps)

| EXIT (m,a,p) => (EXIT(m, n::a, p),
SLOT(n, RESOURCE(prex)))::(nest n ps)

| TAKE (a,p) => npest n ps

] GIVE (m,a,p) => nest n ps)

(*val opens = fn : (pi * prex) list -> (pi * prex) list
(*This function handles open 1/11 of the transition rules. The
(*restricted names should not be the same as free names of the
(*EXIT/ENTER constructor.
fun opens [1 = [1
| opens ((pi,REST(rest,prex))::ps) =
(case pi of
EXIT (n,a,p) => ((EXIT(rest@n,a,p)),prex)::(opens ps)
I GIVE (n,a,p) => ((GIVE(rest@n,a,p)),prex)::(opens ps)
1 _ => (pi,REST(rest,prex))::(opens ps))
| opens ((pi,prex)::ps) =
(case pi of
EXIT (n,a,p) => ((EXIT(n,a,p)),prex)::(opens ps)
I GIVE (n,a,p) => ((GIVE(n,a,p)),prex)::(opens ps)
|1 _ => (pi,prex)::(opens ps))

(*Remove redundant expressions from a composite expression *)
fun rmprex p prex =
(case prex of
cp as (PAR (pl,p2)) => if p = cp then NIL
else PAR((rmprex p pl),(rmprex p p2))
| cp as (PREFIX (1,p1)) => if p = cp then NIL
else if p = pl then rmprex p pl
else cp
| cp as (SLOT (n,r)) => if p = cp then NIL
else if p = (res2prex r) then
(SLOT(n,RESOURCE((rmprex p (res2prex r)))))
else cp
| cp as (REST (r,pl)) => if p = cp then NIL
else if p = pl then (REST(r,(rmprex p pl)))

else cp

| cp as (REP (pl)) => cp

] cp as (PROCESS (s)) => if p = cp then NIL else cp
] cp as NIL => NIL)

(*Remove NIL exp. from prex. Rule E1 of structural equivalence.*)

fun rmnil prex =
let
fun rmn prex =
(case prex of
cp as (PAR(NIL,NIL)) => NIL
] cp as (PAR (p1,NIL)) => rmn pl
] cp as (PAR(NIL,pl)) => rmn pl
| cp as (PAR(pl,p2)) =>

let
val prl = rmn pl
val pr2 = rmn p2
in
PAR(pri,pr2)
end
I _ => prex)
in

14

*)

(rmn prex)

end
(*Find the replications in an expression and return them. *)
(*This is used when “cleaning up". The redundant replicated *)
(*processes are later removed (fun clean) *)

fun findrep p =

(case p of
PAR(p1,p2) => (Ffindrep pl)@(Ffindrep p2)
REST(n,p) => (findrep p)
REP(p) => p::[]
SLOT(n,r) => findrep (res2prex r)
PREFIX(n,p) => findrep p

PROCESS p => [1
NIL = [D
(*Find the restrictions in an expression and return them. *)
(*This is used when "cleaning up". The redundant replicated *)
(*processes are later removed (fun clean) *)

fun findrest p =
(case p of
PAR(p1,p2) => (Ffindrest pl)@(findrest p2)
REST(n,p) => REST(n,p)::[1]
REP(p) => findrest p
SLOT(n,r) => findrest (res2prex r)
PREFIX(n,p) => findrest p
PROCESS p => []
NIL = [

(*Remove duplicate prexes (given in a list) from a prex *)
fun rmpl pl prex =
if not (null pl) then
rmpl (el pl) (rmprex (hd pl) prex)
else prex

(*Remoce NIL and duplicates from (pi * prex) expressions *)
fun rmpil [1 = [
| rmpil ((pi,p)::[1) = (pi, (rmnil (rmpl (Findrep p) p)))::[]
| rmpil ((pi,p)::prexs) = (pi,(rmnil (rmpl (Ffindrep p) p)))::(rmpil prexs)

(*Clean a (pi * prex) list by removing duplicate transitions *)
fun cltrans []1 = [1
| cltrans ((pi,prex)::[1) = (pi,prex)::[]
| cltrans ((pil,pl)::prexs) =
let
val pr = tl prexs
fun neq al a2 = not (al = a2)

in
(pil,pl)::(cltrans (List.filter (neq (pil,pl)) prexs))
end
(*Scope extension. Rule E5 in rules for structural equivalence *)

exception scopeex of string
fun scopeext (prex as PAR(REST(nl1,pl),REST(n2,p2))) =
if not (cln n1 (frn p2)) andalso not (cln n2 (frn pl)) then
REST(n1@n2,PAR(p1,p2))

else prex
| scopeext (prex as PAR(REST(n,pl), p2)) =
let
val prl = scopeext pl
val pr2 = scopeext p2
in

if not (cln n (frn p2)) then
(REST(n,PAR(prl, pr2)))
else prex
end
| scopeext (prex as PAR(p2,REST(n,pl))) =
let
val prl = scopeext pl
val pr2 = scopeext p2
in
if not (cln n (frn p2)) then
(REST(n,PAR(pri,pr2)))
else prex
end
| scopeext (prex as (PAR(p1l,p2))) =
let
val prl = scopeext pl
val pr2 = scopeext p2
val pr = PAR(pri,pr2)

15

in
if pr = prex then
pr
else (scopeext pr)
end
| scopeext p = p

exception transiexception of string

(*This transition function examines possible transitions in a
(*prex and returns a (pi * prex) list *)

(*case par. *)

fun transi (PAR(p1,p2)) =

let
val prl = transi pl
val pr2 = transi p2
val 1 = (ttau prl pr2)@(map (par pl) pr2)@
(map (rpar p2) pril)
val 12 = cltrans (comp 1)
in
1012
end

(*case prefix*)

| transi (PREFIX(I,r)) =
(case I of

ACTION a => (LAMBDA(ACTION(a)).r)::[]

| DIRAC (I,a) => (LAMBDA(DIRAC(I,a)),r)::[1

| MOVE (al,a2) => (LAMBDA(MOVE(al,a2)),r)::[1)
(*case rest¥)

| transi (REST(r,p)) =

let
fun rest n (pi,pr) = (pi,REST(n,pr))
val ps = transi p
val psr = map (rest r) ps
in
opens (cpn r psr)
end

(*case rep*)
] transi (REP p) =
let
*rmprex and rmnil *)
fun clean 1 (pi,prex) = (pi,(rmnil (rmprex I prex)))
(*clean a (pi,prex) list *)
fun cleanpl 1 prexs = cltrans (map (clean I) prexs)
val 1 = transi (PAR(PAR(p,p).p))
val cl = cleanpl p 1
in
if I<>[] then map (rpar (PAR((REP p),p))) cl
else []
end
(*case nesting, enter, exit *)
] transi (s as SLOT(n,r)) =
(case r of
EMPTY => (ENTER(n::[],NIL),SLOT(n,EMPTY))::[]
| RESOURCE p => let
val 1 = transi p
val 1” = cbp 1
in
CEXIT(.n::[1, (res2prex(r)))),
(SLOT(n,EMPTY)))::(nest n 17)
end)
] transi (PROCESS p) I
1

] transi (NIL)
(*Putting it all together *)
fun t p = cltrans (rmpil (transi (scopeext p)))

(*Same as above, with infixed composition *)
fun tr p = (((cltrans o rmpil) o transi) o scopeext) p

(*A counter. Not used.*)
fun count n =
let
val p =1
fun ct nm=
if (n >= m) then
(print ((Int.toString m) = "\n"); (ct n (m+l)))
else print "";
in
ctnp
end

16

