
Efficient Entropy Coding
for Image Compression
A Technical Report at the ITU

Alexandre Krivoulets

IT University Technical Report Series
TR-2002-TR–2002–13

ISSN 1600–6100 2 2002

Copyright c© 2002, Alexandre Krivoulets

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-018-2

Copies may be obtained by contacting:

IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
Web www.it-c.dk

Efficient Entropy Coding Algorithms for Image
Compression

Alexandre Krivoulets

Abstract

In this paper we propose entropy coding algorithms for image and video
compression systems using binary decomposition. We show that this technique
allows for efficient coding algorithms. We propose two decompositions that
allow for reduction of the number of coding parameters by a factor of about
10 compared to the JPEG, while the compression performance is not worse.
A small number of coding parameters per context (3-4) may be beneficial for
multi-context algorithms and for systems with limited memory or hardware
resources, e.g., for mobile communication devices.

1 Introduction

Image compression algorithms are fundamentally carried out in two steps: a mapping
(or transformation) of the original image into a sequence of descriptors, being an-
other representation of the image, followed by entropy coding of the descriptors. The
transformation aims to eliminate redundant information in the image. The kind of
transformation depends on the application. The most popular transforms for lossless
image compression are prediction techniques and reversible discrete wavelet trans-
form, whereas discrete cosine transform (DCT) and discrete wavelet transform are
most used in lossy image and video coding techniques. Transform coefficients and
prediction residuals are the examples of descriptors. Efficient entropy coding of the
descriptors is essential for any compression system.

It has been observed that a probabilistic model for prediction errors and transform
coefficients is well approximated by a continuous off-centered Laplacian distribution
[1, 2]:

f(x) =
α
2

exp−α|x−µ|,

where α > 0 and −∞ < µ < ∞ are the distribution parameters.
In image compression systems, the transform coefficients are usually quantized (or

rounded) using an equidistant quantizer with quantization step ∆ > 0 centered at
zero (for rounding ∆ = 1). After such a quantization, the probability distribution of
discrete symbols i ∈ Z is defined as

1

P (i) =
∫ ∆(2i+1)

2

∆(2i−1)
2

f(x)dx

and after a little algebra we find

P (i) =











1−
√

θ
2

(

θδ + θ−δ
)

, i = 0
1

2
√

θ
(1− θ)θi−δ, i > 0

1
2
√

θ
(1− θ)θ|i|+δ, i < 0

(1)

where θ = exp−α∆ and δ = µ/∆ are the new distribution parameters. Such a dis-
tribution we shall call the off-centered discrete Laplasian distribution (ODLD)1. The
parameter θ defines the rate of decay of the distribution and δ determines the offset
of its center. The introduction of the parameters θ and δ allows us to get rid of the
dependence on ∆ and α in the probability distribution and thereby the continuous
source and quantizer parameters.

Deducing this formula, we assumed, that −∆/2 ≤ µ ≤ ∆/2, i.e., −0.5 ≤ δ ≤ 0.5.
The restriction is justified by the fact, that in practice for transform coefficients the
inequality |µ| � ∆ is often true, and for context-based prediction schemes the unit
interval containing the center of the distribution can be located by an error feedback
loop [3, 4].

A method that approximates optimal coding of sources with the ODLD was first
proposed in [5] and is widely used for coding of prediction residuals in image com-
pression algorithms. However, the performance of this technique can be improved by
using arithmetic coding. Moreover, the method is not applicable for sources with the
entropy less then 1 bit, e.g., for coding of transform coefficients after quantization
in loosy image compression techniques. Another ad-hoc method, based on Huffman
coding, was developed for the JPEG image compression standard [6] and video com-
pression standards [7] to code AC and DC coefficients of the DCT. Similar technique
was used for coding of wavelet transform coefficients in [8]. Despite these methods
allow for fast coding and coding, the efficiency also can be improved by about 5. . . 15%
using arithmetic coding.

However, direct use of m-ary arithmetic coding (m is the size of the source alpha-
bet) may be inefficient for sources with the ODLD. The main problem is the alphabet
size. Although formula (1) assumes an infinite alphabet, in practice it is finite, but
quite large (e.g., the potential range of DCT coefficients in the JPEG image compres-
sion standard is supposed to be in the range −2047 . . . 2047 for images with 8 bits per
sample [6]). Using arithmetic coding, one must store and update as many parameters
as the alphabet size2. Furthermore, such skewed distribution causes waste of the code

1Another distribution, called two-sided geometric distribution (TSGD), was proposed in [3] to
model the probability distribution of prediction errrors in prediction based image compression al-
gorithms. Although there is no preference among these distributions, in some cases they may give
different solutions for optimal coding. We developed the proposed methods based on the ODLD
model, even though some results are also applicable for sources with the TSGD.

2Of course, for the source (1) one could estimate, store and update only two parameters and
calculate the probabilities for the whole alphabet, but this would decrease the coding speed.

2

space and thereby, reduces the coding efficiency.
An efficient method based on binary tree decomposition of the source alphabet,

combined with binary arithmetic coding, was proposed for coding of DC and AC
coefficients of the DCT in the JPEG image compression standard [6]. The binary
decomposition allows to overcome the aforementioned problems and efficiently code
sources with large alphabets and skewed distribution. Using multiplication free arith-
metic coding, one may also design fast algorithms.

In this paper, we propose two methods of coding of sources with the ODLD using
this technique. The main advantage of the methods is a small number of coding
parameters (3-4). This is near to the number of parameters of the distribution (1), and
it is less by a factor of about 10 than that of the JPEG (33 parameters), whereas the
compression efficiency is not worse. A small number of coding parameters is essential
for multi-context algorithms. It also may be beneficial for compression systems with
limited memory or hardware resources.

One more benefit is that they are developed for sources with infinite alphabet.
This means that, there is no limit imposed on the alphabet size. They are suitable
for real sources with any alphabet size without any changes in the algorithm.

This paper is organized as follows. In the next Section we describe the general idea
of the binary decomposition technique for source coding. In Section III, we present
two decompositions for coding of the ODLD sources and discuss their properties.
Finally, in Section IV we present the experimental results and discuss the efficiency
and properties of the proposed methods.

2 Source coding using binary tree decomposition

Binary decomposition of source symbols, combined with binary arithmetic coding, is
a well known technique for coding of m-ary sources [6, 9, 10]. A general idea of this
method is that any proper and complete binary tree with m leaves can be used to
represent symbols from an m-ary source A = {a1, a2, . . . , am} with any probability
distribution. A source symbol is represented by the sequence of binary decisions when
passing through the tree from the root to the leaf, corresponding to this symbol. The
sequence of decisions can be regarded as a sequence of binary symbols generated by
a Markov source, modeled by this tree. Each node of the tree corresponds to a state
of the source and the tree defines a corresponding directed graph of state transitions.
The root node defines the initial state.

A binary tree with m leaves has K = m − 1 nodes. To each node ηk, k =
0, 1, . . . , K − 1, of the decomposition tree there corresponds a parameter qk. Each
parameter, i.e, probability of a binary symbol (decision) being ’0’, assumes a value in
[0, 1] and specifies a binary probability distribution at the node. These parameters are
uniquely defined by the probability distribution of the source symbols. The sequence of
binary decisions can be decomposed into K subsequences of statistically independent
binary symbols with probability distributions qk, corresponding to each node. The
subsequences can be effectively encoded using some kind of binary coding techniques,
e.g., arithmetic coding [11] or Golomb run-length coding [12]. If the statistics of the

3

source is unknown or changing, one can implement an adaptive coding technique and
thereby adjust the coding parameters to the source probability distribution.

Binary arithmetic coding is much simpler for hardware and software implemen-
tations than an m-ary arithmetic coding. The model no longer has to produce and
maintain cumulative probabilities. A single distribution parameter is sufficient to en-
code a decision at each node. On the other hand, one has to encode more than one
binary event for each input symbol. The average number of binary coding operations
per source symbol is defined as

n =
∑

a∈A

P (a)n(a),

where n(a) is the number of binary decisions to code a. This parameter defines mainly
the coding speed. The minimum n is achieved when the tree is a Huffman tree for
this source. The use of binary decomposition assumes that the decomposition tree is
fixed3 during encoding, and compression is performed by a binary coding technique.
Using properties of the distribution (1) we propose two decomposition trees, which
allow to reduce the number of coding parameters to 3 or 4.

3 Binary decompositions of alphabet for sources
with the ODLD

The first proposed decomposition tree A is a unary representation of the index in the
sequence of symbols of source (1) arranged in non-increasing probability order, that
is: 0, +1,−1, +2,−2, . . . , if δ ≥ 0 or 0,−1, +1,−2, +2, . . . , if δ ≤ 0. In this tree the
path from the root to the leaf i can be defined as















1 . . . 1
︸ ︷︷ ︸

2i−1

0 if i > 0,

11 . . . 1
︸ ︷︷ ︸

2|i|

0 if i ≤ 0, (2)

if δ ≥ 0 or










1 . . . 1
︸ ︷︷ ︸

2i

0 if i ≥ 0,

11 . . . 1
︸ ︷︷ ︸

2|i|−1

0 if i < 0, (3)

if δ ≤ 0. The average number of binary coding operations per source symbol is

n̄A = 1 +

√
θ

2

(

2θ|δ| + θ−|δ|(1 + θ)
1− θ

)

.

It can readily be shown, that this decomposition with proper ordering of source
symbols (i.e., in non increasing probability order) is a Huffman tree if θ < θmax(δ)

3Otherwise, we would come to a (dynamic) Huffman coding technique and there would be no
need for binary coding (at least for sources with an entropy larger than 1 bit).

4

� -

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�A
A
A�

�

1 0
η0

η1

η2

η3

η4

i = 0

i = 1

i = −1

i = 2

i = −2
. . .

� -

�
�

�
�

@
@

@
@

�
�

�
�

@
@

@
@

�
�

�

A
A
A

�
�

�

A
A
A

�
�

A
A
A

�
�

A
A
A

�

�

�

�

1 0
η0

η1

η2 η3

η4 η5

i = 0

i = 1 i = −1

i = 2 i = −2

.

(a) (b)

Figure 1: The decomposition trees. (a) The decomposition tree A, (b) The decom-
position tree B.

and min
δ
{θmax(δ)} = θmax(δ = 0) = 1/3. That is, if 0 < θ < 1/3, −0.5 ≤ δ ≤ 0.5,

then no other decomposition can achieve a smaller n̄. For 0 < θ < 1/3, max
δ
{n̄A} =

n̄A(δ = 0) . 2.44 and the entropy of the source H . 2.36. Hereafter, a source with
the entropy H ≤ 2.36 bits will be referred to as the low entropy source, and a source
with H > 2.36 bits as the high entropy source.

Although the unary tree is optimal for sources (1) with low entropy in terms of the
number of coding operations, it can be used for coding of sources with any entropy.
Furthermore, it allows for reducing the number of storing parameters to three.

Without loss of generality, assume, that the decomposition tree is defined by (2),
regardless whether the symbols are arranged in non-increasing order or not. Let the
nodes ηk be indexed in such a way, that k = 0 corresponds to the root node, and
increment index to each successive node (see Fig. 1a).

To code a source symbol i, the encoder codes a sequence of n = 2i − 1, if i > 0,
or n = 2|i|, if i ≤ 0, binary symbols ‘1’ followed by ‘0’. The binary symbol at the
position j = 1, 2, . . . , n + 1 corresponds to a decision at the node ηj−1 and is coded
using probability distribution qj−1. It can readily be verified, that

qk =











1−
√

θ
2

(

θδ + θ−δ
)

k = 0,
(1−θ)θ−δ

θδ+θ−δ k = 2t− 1,
(1−θ)θδ

θδ+θ1−δ k = 2t,

(2)

where t = {1, 2, . . . }.
Even though the tree has infinitely many nodes, it is evident, that only three

parameters corresponding to the nodes η0, η1 and η2 are necessary to store and update.
The last two are used for coding at all odd and even remaining nodes, respectively.

The drawback of this decomposition is that for high entropy sources the tree is
not a Huffman tree. A good trade off is a tree, that provides a reasonable number of

5

binary coding operations per input symbol for a wide range of θ, while having a small
number of parameters and a simple data structure.

For high entropy sources, e.g., for coding of the prediction residuals in lossless
image compression algorithms, we propose the decomposition tree denoted B. The
first decision in this decomposition is whether the symbol i is zero or not (let it be
‘0’ if i = 0 and ‘1’ otherwise). If not, then the second decision is whether the symbol
is positive or negative (let it be ‘1’ if i > 0 and ‘0’ otherwise), and then use unary
decomposition of |i−1| (let it be |i−1| ‘1’s followed by ‘0’). Figure 1b shows the tree.

The probability of the decision ‘0’ at the node ηk is defined as

qk =







1−
√

θ
2

(

θδ + θ−δ
)

, k = 0,
θ−δ

θδ+θ−δ , k = 1,
1− θ, k = 2, 3, . . .

Thus, for this decomposition tree, as well as for the decomposition A, the param-
eters only at three nodes η0, η1 and η2 are sufficient to store and update. However,
we propose to keep the statistics for positive and negative branches separately, i.e.,
use a separate parameter q3 for the node η3. This allows for capturing the statistics if
the actual probability distribution of source symbols has different slopes for positive
and negative values. So, we propose the total number of parameters for this decom-
position to be 4. Decisions at the nodes η2t and η2t+1, t = 1, 2, . . . , are coded using
the parameters q2 and q3 respectively.

The average number of binary coding operations per input symbol using this de-
composition is

n̄B = 1 +

√
θ

2

(

2− θ
1− θ

)

(

θδ + θ−δ) .

For low entropy sources n̄B/n̄A < 1.34 and for high entropy sources 0.5 < n̄B/n̄A <
1 (for H > 7.5 bit, 0.5 < n̄B/n̄A < 0.526 and if H → ∞, then n̄B/n̄A → 0.5,
∀δ ∈ [−0.5, 0.5]).

4 Experimental results and discussion

In order to evaluate the efficiency of the proposed methods, we implemented them
for entropy coding of prediction residuals and DCT coefficients for lossless and lossy
compression techniques respectively. The aim was to evaluate the compression and
speed efficiency for coding of data with different entropy and for different applications
and compare them with the decomposition used in the JPEG standard. Binary coding
for both decompositions, as well as for the JPEG decomposition, was implemented
using the QM-coder [6]. For testing purposes we used nine 8-bit grayscale images of
size 720× 576, which are available via the internet [13].

In the first case we implemented a simple prediction technique and coded the
prediction residuals. We used the average of the pixel above X[i− 1, j] and the pixel
to the left, X[i, j − 1], as the prediction value for the current pixel X[i, j]. This

6

corresponds to the predictor No.7 of the lossless mode of the JPEG standard. The
sequence of prediction residuals was treated as a memoryless source. Table 1 shows
the resulting number of bytes of the compressed images. Table 2 gives the number
of binary coding operations per pixel. We used this parameter to evaluate the speed
performance. The “Diff.” column in all tables gives the relative differences of figures
between the JPEG decomposition and the proposed ones.

In the second case we coded DCT coefficients, acquired from the JPEG compressed
files with the average compression ratio about 7:14. We encoded the coefficients of
the same spatial frequency together and used separate statistics for each frequency.
We did not use the “end of block” symbol. The reason was to compare the average
compression performance for sources with different entropy, which, in essence, were
formed by the coefficients with different spatial frequencies. Tables 3 and 4 give the
number of bytes of the compressed images and the number of binary coding operations
per pixel respectively.

Experimental results show that the compression performance of both proposed
decompositions is not worse than that of the JPEG standard, while they have much
smaller the number of the parameters. The decompositions A and B require to store
and update only 3 and 4 parameters, respectively, versus 33 parameters for the JPEG
decomposition. (Therefore, branching the tree is also simpler.)

The decomposition A has an obvious advantage for sources with entropy H ≤
2.36 bits, since it has the smallest number of the binary coding operations per input
symbol. The decomposition B has about half the number of coding operations per
input symbol than the decomposition A for high entropy sources. Although, the
decomposition B has about 20% more binary coding operations per symbol than the
JPEG decomposition, the real difference of speed performance may be less than this
figure. This is because passing the JPEG tree decomposition in the coding process
is more costly operation than passing the tree B (there are fewer nodes to pass).
Nonetheless, both decompositions allow for improvement of speed performance in
different ways.

A straightforward way is to use one of a number of proposed multiplication free
binary arithmetic coders (see, e.g., [14, 15, 16]). Another way is to use run-length
Golomb codes. For example, the Rice coding [5] can be viewed as a fast version of
the decomposition A, where the decisions are treated as a binary memoryless source
and coded using Golomb codes. Although the Rice coding is widely used for coding of
high entropy sources, we propose a modification (generalization) of this algorithm for
sources with any entropy. In this modification, the encoder adaptively switches the
Golomb run-length coding to code the most probable binary symbol of the sequence
of decisions, thereby allowing the encoding of sources with low entropy.

The speed improvement of the fast version is for the price of higher redundancy.
The relative redundancy of the modified Rice algorithm is upper bounded by 50%, if
H → 0, and for 0.05 < H < 1 it is about 10%-30%. (These figures are valid if the

4The reason for such a ratio was to have the ODLD sources in a wide range of distribution
parameters (see below in the paragraph). Otherwise, for higher compressed images most of the high
frequency coefficients would be zero.

7

Image JPEG decomp. Decomp. A Diff. Decomp. B Diff.
baloon 170043 169425 -0.36% 169574 -0.27%
barb 277707 268953 -3.15% 269895 -2.81%
barb2 276088 268103 -2.89% 269465 -2.40%
board 216994 215733 -0.58% 216432 -0.26%
boats 233511 229546 -1.70% 231318 -0.94%
girl 231568 227700 -1.67% 228466 -1.34%
gold 249334 246321 -1.21% 247885 -0.58%
hotel 260963 255600 -2.01% 255882 -1.94%
zelda 218749 217480 -0.58% 218167 -0.27%

average 237217 233206 -1.69% 234120 -1.30%

Table 1: The number of bytes for lossless image compression.

Image JPEG decomp. Decomp. A Diff. Decomp. B Diff
baloon 3.50 4.46 +27.47% 3.66 +4.53%
barb 6.73 17.30 +157.02% 10.27 +52.64%
barb2 6.70 16.63 +148.23% 9.93 +48.22%
board 4.90 8.26 +68.72% 5.69 +16.15%
boats 5.35 9.85 +83.85% 6.50 +21.31%
girl 5.24 8.48 +61.93% 5.81 +10.94%
gold 6.05 11.16 +84.38% 7.19 +18.76%
hotel 6.16 13.48 +118.75% 8.35 +35.52%
zelda 5.00 7.24 +44.60% 5.20 +3.97%

average 5.52 10.76 +95.11% 6.96 +26.10%

Table 2: The average number of binary coding operations per pixel for lossless image
compression.

Image JPEG decomp. Decomp. A Diff. Decomp. B Diff
baloon 33017 33483 +1.44% 33458 +1.33%
barb 75799 75574 -0.30% 75594 -0.27%
barb2 78377 77808 -0.73% 77898 -0.61%
board 43849 44833 +2.24% 44695 +1.92%
boats 55272 55413 +0.26% 55469 +0.36%
girl 55364 55200 -0.30% 55207 -0.28%
gold 64402 63905 -0.77% 64111 -0.45%
hotel 67595 67545 -0.07% 67579 -0.02%
zelda 42579 42409 -0.40% 42597 +0.04%

average 57361 57352 -0.016% 57400 +0.068%

Table 3: The number of bytes of compressed DCT coefficients.

8

Image JPEG decomp. Decomp. A Diff. Decomp. B Diff
baloon 1.44 2.05 +42.4% 1.66 +15.3%
barb 2.09 3.52 +68.7% 2.57 +23.2%
barb2 2.12 3.41 +60.6% 2.54 +19.3%
board 1.57 2.55 +62.1% 1.95 +23.8%
boats 1.79 2.81 +56.8% 2.14 +19.3%
girl 1.83 2.83 +54.9% 2.16 +18.0%
gold 1.94 2.81 +44.8% 2.21 +13.7%
hotel 1.97 3.48 +76.6% 2.51 +27.5%
zelda 1.61 2.33 +44.6% 1.85 +15.2%

average 1.82 2.87 +57.6% 2.18 +19.7%

Table 4: The average number of binary coding operations per pixel for the DCT
coefficients.

source symbols are arranged in non-increasing probability order, or if µ � ∆, i.e.,
δ ≈ 0)

The speed performance of the decomposition B, combined with the QM-coder (like
in our experiment), can be improved by using “speed up” mode [6]. Another way is
to send the second decision (the sign bit) directly to the output bit stream.This may
increase the code length by at most 6.2% (for the worst case when δ = ±1/2) for
sources with entropy H ≥ 2.36 bit. If H < 2.36 bit, the increase can be more than
6.2% for δ → ±1/2. However, in most applications δ ≈ 0 (especially for low entropy
sources). That is, in practice, the increase usually is negligibly small.

One more advantage of the proposed methods is that there is no embedded limit
on the alphabet size, thereby any value can be encoded and there is no need to adjust
the algorithm while designing, for example, a compression system for images with
different number of bits per pixel.

5 Conclusion

In this paper we studied a coding of sources with the ODLD using binary decom-
position and suggested two methods that allow for efficient coding of sources with
such skewed distribution and infinite alphabets. We have shown, that the proposed
methods have reduced the number of parameters by a factor of about 10 compared
to the JPEG, while the compression efficiency is not worse. This may be essential
for multi-contexts algorithms or when designing a compression system with limited
memory or hardware resources. Also, we discussed of fast software and hardware
implementations.

9

References

[1] J.O’Neal, “Predictive quantizing differencial pulse code modulation for the trans-
mission of television signals,” Bell Syst. Tech. J., vol.45, pp. 689-722, May 1966.

[2] R.C. Reininger, J.D. Gibson “Distributions of the two-dimentional DCT coeffi-
cients for images,” IEEE Trans. on Comm. vol. 31, no.6, pp. 835-839, 1983.

[3] N. Merhav, G. Seroussi, and M. J. Weinberger, “Optimal prefix codes for two-
sided geometric distributions,” IEEE Trans. Inform. Theory, vol.46, pp. 121-135,
Jan. 2000.

[4] M.J. Weinberger, G.Seroussi and G.Sapiro, “The LOCO-I lossless image com-
pression algorithm: Principles and Stamdartization into JPEG-LS,” IEEE Trans.
Image Proc., vol. 9, no. 8, pp. 1309-1324, Aug., 2000.

[5] R.F. Rice “Some practical universal noisless coding technique,” JPL Publication
79-22, Pasadena, California, Mar. 1979.

[6] W.B. Pennebaker, J.L. Mitchell, JPEG – Still Image Data Compression Standard.
New York: Van Nostrand Reinhold, 1993.

[7] R. Schäfer and T. Sikora, “Digital video coding standards and their role in video
communications,” Proceedings IEEE, vol. 83, no. 6, pp. 907-923, 1995.

[8] A. Said and W.A. Pearlman. “An image multiresolution representation for lossless
and lossy compression,” IEEE Trans. Im. Proc., vol. 5, no. 9, pp. 1303-1310, 1996.

[9] G.G. Langdon and J.J. Rissanen “A double adaptive file compression algorithm,”
IEEE Trans. Comm., vol.31, no.11, pp. 1253-1255, 1983.

[10] P.G. Howard, “The design and analysis of efficient lossless data compression
systems,” Report CS-93-28, Brown Uneversity, Providence, Rhode Island, 1993.

[11] I.H. Witten, R. Neal, and J.G. Cleary, “Arithmetic coding for data compression,”
Comm. ACM, vol.30, no.6, pp. 520-541, 1987.

[12] S.W. Golomb “Run-length encoding,” IEEE Trans. Inform. Theory, vol.12, pp.
399-401, 1966.

[13] ftp://ftp.csd.uwo.ca/pub/from wu/images .

[14] G.G. Langdon and J.J. Rissanen “A simple general binary source coding,” IEEE
Trans. Inf. Theory, vol.28, no.5, pp. 800-803, 1982.

[15] W.B. Pennebaker, J.L. Mitchell, G.G. Langdon and R.B.Arps, “An overview of
the basic principles of the Q-coder adaptive binary arithmetic coder,” IBM J.
Res. Develop., vol.32, no.6, pp. 717-726, 1988.

[16] P.G. Howard and J.S. Vitter, “Arithmetic coding for data compression,” Proc.
IEEE, vol.82, no.6, pp. 857-865, Jun. 1994.

10

