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Identifying Nearest Common Ancestors in a Distributed
Environment

Stephen Alstrup* Cyril Gavoille Haim Kaplan? Theis Rauhe?

Abstract

We give a simple algorithm that labels the nodes of a rooted tree such that from the labels of
two nodes alone one can compute in constant time the label of their nearest common ancestor.

The labels assigned by our algorithm are of size O(logn) bits where n is the number of nodes
in the tree. The algorithm runs in O(n) time.
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1 Introduction

Let T be a rooted tree. A node x € T is an ancestor of a node y € T if the path from the root of
T to y goes through z. A node v € T' is a common ancestor of z and y if it is an ancestor of both
z and y. The nearest common ancestor, NCA, of two nodes z,y is the common ancestor of z and y
whose distance to z (and to y) is smaller than the distance to = of any other common ancestor of
z and y. We denote the NCA of z and y by nca(z,y). The problem of efficiently computing nearest
common ancestors has been studied extensively over the last three decades in an online and offline
settings, and in various models of computation (See e.g. [33, 2, 3, 26, 40, 11, 7]).

The problem of finding NCAs has numerous applications. A procedure solving it is used by
algorithms for finding a maximum weighted matching in a graph [22], a minimum spaning tree in a
graph [29, 13], and a dominator tree in a directed flowgraph [3]. It is also proved useful in several
string algorithms [24, 15], for dynamic planarity testing [44], in network routing [5], for solving
various geometric problems [9] including range searching [21], for finding evolutionary trees [16],
and in bounded treewidth algorithms [10].

One of the most fundamental results on computing NCAs is that of Harel and Tarjan [26, 25].
Harel and Tarjan describe a linear time algorithm to preprocess a tree and build a data structure
that allows subsequent NCA queries to be answered in constant time. Following this result of Harel
and Tarjan’s several simpler algorithms with essentially the same properties but better constant
factors have been proposed [38, 32, 21, 40, 8] (See also Section 1.2). These algorithms, including
the one of Harel and Tarjan, use the observation that it is rather easy to solve the problem when
the input tree is a completely balanced binary tree.

To solve the problem when the input is a completely balanced binary tree one has to label
the nodes by their index in an inorder traversal of the tree. If the tree has n nodes each such
number occupies £ = [logn] bits!. Let inorder(z) and inorder(y) be the inorder indexes of z and v,
respectively. Let 4 be the maximum among 1) the index of the leftmost bit in which inorder(z) and
inorder(y) differ, 2) the index of the rightmost 1 in inorder(z), 3) the index of the rightmost 1 in
inorder(y). It is easy to prove by induction that the inorder number of nca(z, y) consists of leftmost
£ — i bits of inorder(z) (or inorder(y) if the maximum above was the index of the rightmost 1 in
inorder(y)) followed by a 1 and ¢ — 1 zeros.

Note that this algorithm for completely balanced binary trees is distributed in the sense that it
constructs the inorder index of nca(z,y) from the inorder indices of z and y alone without accessing
the original tree or any other global data structure. In case the application does not identify nodes
by their inorder indices then tables converting a node identifiers to inorder indices and vice versa
have to be constructed. In the common case where a node is identified by a pointer to a structure
representing it then we can simply store the inorder index as an extra field in that structure. This
will allow to get the inorder index of a node giving a pointer to its corresponding structure in
constant time. For mapping the inorder index of the NCA back to a pointer to the corresponding
node a table of O(2¢) = O(n) entries can be easily constructed.

The algorithms in [26, 38, 32, 21, 40, 8] for general trees all work using some mapping of the
tree to a completely balanced binary tree. Thereby exploiting the fact that for completely balanced
binary trees the problem is easier. Different algorithms differ by the way they do the mapping.
Unfortunately, all algorithm, as a result of doing the mapping, have to use some precomputed
auxiliary data structures in addition to the labels of the nodes, in order to compute NCaAs. In
contrast with the algorithm for completely binary trees these algorithms for general trees do not
allow to compute an unique identifier of nca(z,y) from short labels associated with = and y alone.

L All the logarithms are in base two.



In this paper we show how to label the nodes of an arbitrary tree so that from the labels of
z and y alone one can determine the label of nca(z,y). In particular we constructively prove the
following theorem.

Theorem 1 There is a linear time algorithm that labels the n nodes of a rooted tree T with labels
of length O(logn) bits such that from the labels of x,y € T, one can compute in constant time the
label of nca(z,y).

Our algorithm is as simple as the simpler among the non distributed algorithms mentioned
above. In a scenario when nodes have to be identified by some predetermined identifiers one can
use our algorithm together with a table converting labels to those predetermined identifiers and
vice versa. Thus our algorithm provides an alternative to any of the algorithms mentioned above
also in a non distributed settings. Theorem 1 should put in contrast with a recent lower bound of
Peleg [37]. Peleg shows that labels which allow to compute directly a ©(logn) bit predetermined
identifier of nca(z,y) from the labels of z and y alone must be of length Q(log? n) bits. So to obtain
a theorem like Theorem 1 one has to exploit the freedom to choose the identifiers of the nodes. A
distinguished feature in our algorithm is its use of alphabetic codes [23] to generalize the inorder
approach for completely balanced binary trees.

A labeling scheme to identify NCAs may be useful in routing messages on tree networks. When
a message has to be sent from node a z to node y in a tree it has to go through nca(z,y). Therefore
the ability to compute the identifier of nca(z,y) from the identifiers of x and y may prove useful.
Our particular NCA labeling scheme also allows to identify the first edge on the shortest path from
z to y from the labels of z and y alone. In that sense it generalizes recent labeling schemes for
routing on trees [17, 42] (see also Section 1.3). Another possible application of our algorithm arises
in XML search engines. Such search engines typically maintain a reverse index. This index is a
hash table mapping each word or a name of a tag to all XML-documents containing it. The engine
can exploit the fact that an XML-document is essentially a tree and label each such tree using
our algorithm. Then it can attach to each occurrence of a word in a document the label of the
corresponding node. By doing that the engine can process sophisticated queries by accessing only
the hash table rather than the documents themselves.

1.1 NCA and discrete range searching

Gabow, Bentley, and Tarjan [21] observed that the one-dimensional Discrete Range Searching (DRS)
problem, is equivalent to the NCA problem. The DRS problem is defined as follows. Given a sequence
of real numbers z1, ..., z,, preprocess the sequence so that one can answer efficiently subsequent
queries of the form “given a pair of indices (7, j), what is the index of a maximum element among
Zi,-..,%;7”. We denote such query by max(i,j). The DRS problem is a fundamental geometric
searching problem and many orthogonal range searching problems in two and higher dimensions
are often reduced to DRS [4, 21].

Gabow et al. (see also [31]) reduce the DRS problem to the NCA problem by constructing a
Cartesian tree for the sequence z1,...,z,, as defined by Vuillemin [43]. The Cartesian tree of
the sequence x1,...,z;, is a binary tree with n nodes each containing a number z;. Let z; =
max {z1,...,Zn}. The root of the Cartesian tree for z1,...,z, contains z; (and possibly also the
index j). The left subtree of the root is a Cartesian tree for z1,...,z;_1, and the right subtree of
the root is a Cartesian tree for z;,1,...,z,. Vuillemin shows how to construct the Cartesian tree
of 1,...,z, in O(n) time. It is easy to see that the maximum among z;, ..., z; corresponds to the
NCA of the node containing z; and the node containing z;.



Gabow et at also show how to reduce the NCA problem to the DRS problem. Given a tree
they first construct a sequence of its nodes by doing a depth first traversal [41]. Each time we
visit a node we add it to the end of the sequence so each node appears in the sequence as many
times as its degree. Note that this sequence is an Euler tour of the tree. From the Euler tour
they obtain a sequence of integers by associating the depth of node with each of its occurrences.
To compute nca(z,y) we pick arbitrary two elements x;, z; in the sequence representing = and v,
respectively, and compute the index of the maximum among z;,...,z;. It is easy to see that the
node corresponding to this maximum element is nca(z,y).

Combining the equivalence between the NCA problem and the DRS problem with Theorem 1 we
obtain the following corollary.

Corollary 2 Let z1,...,z, be a sequence of n real numbers. We can assign in linear time a label
of length O(logn) bits to each element, such that, given the labels of x;,x;, the label of a mazimum
among i, ...,x; can be computed in constant time from the labels of z; and z; alone.

If the value z; is required rather than its label we need one lookup in a global table to map a label
to a real number. We can implement this mapping either using sufficient space, using linear space
and expected linear preprocessing time [20], or using linear space with O(nlogn) deterministic
preprocessing time [35].

1.2 Related work

As mentioned in Section 1, Harel and Tarjan [26] were the first who described how to preprocess
a tree in linear time such that one can answer NCA queries in constant time per query. However
they already point out in [26] that one could simplify some parts of their algorithm. Subsequently,
Scheiber and Vishkin [40] contracted some of the preprocessing steps of Harel and Tarjan into a
single step and obtained a simpler algorithm which they could also parallelize easily. Powell [38]
describes a simplification of the algorithm of Scheiber and Vishkin.

Berkman and Vishkin [8] describe a simpler algorithm which is based on the equivalence between
the NCA problem and the DRS problem. Let z1,...,z, be the input to the DRS problem. We build a
complete binary tree with leaves z1, ..., z, from left to right. With each internal node we associate
a left value which is the maximum among the values in its left subtree and a right value which is
the maximum among the values in its right subtree. We also associate with each leaf [ two tables
each with logn entries, denoted by right; and left;. For a leaf I the value right;(z) is the maximum
among the right values of the i closest ancestors of [. The value of left;(i) is defined similarly. To
answer a query of the form max(¢, j) we find the depth d of nca(z;, z;) using a simple NCA algorithm
for complete binary trees. Then we return the maximum among right, (d — 1), and left,;(d — 1).
Obviously, the drawback of this simple algorithm is that it requires O(nlogn) preprocessing time
and space.

To overcome this difficulty Berkman and Vishkin observed that the sequence of depths of nodes
on an Euler tour of the tree (obtained by reducing the NCA problem to the DRS problem) consists of
integers such that the absolute difference between consecutive integers is at most 1. Based on this
observation they suggested a three level algorithm for the DRS (and the NCA) problem which runs in
linear time. In their scheme the sequence is partitioned into blocks each of size O(logn), and each
block is further partitioned into microblocks each of size O(loglogn). They use the observation
that |z; — z;41| = 1, for 1 <4 < n — 1, to precompute the answers to all possible queries inside
all possible microblocks in one large table. Then they apply the nonlinear algorithm described
above to each sequence of microblocks in a block, and to the sequence of blocks, representing each



block or microblock by the maximum element in it. Since the number of microblocks in a block is
logn/loglogn and the number of blocks is n/logn the resulting structures are of linear size. We
answer a maximum query in constant time using the algorithm above on the relevant blocks and
two lookups in the table of precomputed answers to queries in microblocks. Farach and Bender [32]
show that in fact one can in linear time precompute all answers to queries inside blocks if the size
of the block is §logn. Therefore the microblock level of [8] is not needed and a simpler two level
algorithm based on the same principals exists.

The algorithm of Berkman and Vishkin implicitly reduce the NCA problem for general trees to
the NCA problem for completely balanced binary trees. By solving the NCA problem for completely
balanced binary trees they obtain an algorithm for DRS on inputs where |z; — z;41] = 1, for
1 <4 <n—1. Then they reduce the general NCA problem to this special case of DRS. Using the
reduction from DRS to NCA described in Section 1 this also implies a solution to DRS for general
sequences.

Last, we observe that in fact one can solve the DRS problem for general sequences directly,
without going through the long reduction sequence to the special case of DRS just described. The
solution to DRS described above exploited the restriction that |z; —z;11| = 1 only to solve small sub-
problems of size % logn. Alternatively, we can solve a DRS problem z1,. ..,z of size m = |logn] as
follows. For each z; we compute g(z;) = max{k | k < i and z} > z;} U{—1}. It is not hard to see
that one can compute g(z;) for every 1 < i < m, in O(m) time by maintaining the largest elements
in all suffixes of the sequence on a stack. Based on the values of g(z;) we associate a label, I(z;), of
size m bits with z;, for every 1 < i < m. The jth bit of [(x;) corresponds to element z;, 1 < j < m,
and it is set if and only if j < 4, z; > x;, and for every zy, j < k <1, 7} < xj. We compute these
labels recursively as follows. The label I(z1) is 0. For i > 1, I(z;) is the same as I(zy(,,)) but with
bit g(z;) also set. Now for i < j, we find max(i,j) from I(z;) as follows. We clear all bits with
index smaller than ¢ in [(z;), getting a word w. Then we return z; if w = 0, and otherwise we
return Tjg,(,,), where Isb(w) is the index of the least significant bit in w?. Using this technique for
the blocks we obtain a simpler DRS and NCA algorithms. None of these algorithms however implies
Theorem 1 or Corollary 2. If we try to distribute the data structures of any of the algorithms
described so far so that it is possible to answer queries from the labels of the corresponding nodes
alone, then the shortest labels we can get consists of Q(log? n) bits.

A somewhat different and interesting approach for computing NCAs on trees of depth O(logn)
has been suggested by King [30]. King’s algorithm labels each edge of the tree by either 0 or 1
randomly by flipping a fair coin. Then we label each node v with the concatenation of the labels
of the edges on the path from the root to v. To find nca(z,y) we first find the length, d, of the
longest common prefix of the label of z and the label of y. Let ancestor(z,d) be the ancestor of
depth d of z. If ancestor(x, d) is also an ancestor of y then it is the NCA of z and y. Otherwise for
i=1,2,... we check whether ancestor(z,d — i) is an ancestor of y until we find such a node which
must also be the NCA of z and y. It is easy to see that we would have to perform & ancestor queries
with probability at most 1/2¥. Therefore, on average, we need to perform a constant number of
ancestor queries that involve ancestors of z at a particular level. The drawback of this scheme is
that it requires external data structures to compute the ancestor of a node with a specified depth
and to answer ancestor queries [39].

% As previous NCA algorithms (e.g. [26, 8]) we assume that bit operations, on words of size log n, can be precomputed
in O(n) time it they not are supported to begin with.



1.3 Labeling schemes for distributed environment

Motivated by applications in the construction of XML search engines and network routing [1, 28, 36]
labeling schemes that allow ancestor queries have been recently developed. Santoro and Khatib [39]
suggested to label the leaves of the tree from left to right by consecutive integers, and then to label
each internal node by the pair of the labels of its leftmost and rightmost leaf descendants. One
can then answer ancestor queries by checking if the corresponding intervals are nested. Clearly the
maximum length of a label according to this scheme is 2logn bits. Recently, Alstrup and Rauhe [6]
building upon the work of Abiteboul, Kaplan, and Milo [1] gave a more complicated recursive
labeling scheme for ancestor queries that generates labels of length at most logn + O(v/logn)
bits. Labeling schemes for parent queries, and other functions have also been studied [27, 28, 37].
Unfortunately these labeling schemes for ancestor queries do not allow to identify the nearest
common ancestor of z and y when they are unrelated. The labeling scheme that we describe in
this paper do allow this extra functionality.

In [42] and [17] it is demonstrated how compact labelings of a tree, can improve routing in trees
and graphs. In the routing problem one assigns two labels to every node of the graph. The first
label is is the address of the node whereas the second label is a data structure called local routing
table. The labels are assigned such that at every source node z, and for every destination node y
one can find the first edge (or an identifier of that edge) on a shortest path from z to y from the
local routing table of z and the address of y. So the path from z to ¥y is built in a distributed
way by all intermediate nodes encountered along the way. The goal is to obtain such labeling with
labels as small as possible.

Cowen in [12] shows how to construct a labeling for trees that uses 3 logn bits for the addresses
and O(min{dlogn,+/nlogn}) bits for the local routing table, where d is the degree of the node.
In [14], Eilam et al. show that any labeling in which the length of the addresses is at most logn bits
will require Q(+/n) bits for the routing table in some trees. However, Gavoille and Fraigniaud [17]
showed that clog n bits, for a small constant ¢, are enough to encode both the address and the local
routing table of each node of the tree. Thorup and Zwick [42] even show that both the address and
the local routing table of each node can be encoded together using logn + O(logn/loglogn) bits
(so ¢ =1+ o(1) suffices). Thorup and Zwick also show how to use their tree labeling to construct
labeling for general graphs based on tree covering.

The labeling schemes for routing mentioned above do not allow to determine NCAs without
some extensions. The labeling scheme that we suggest in this paper, however, allows not only to
identify nca(z,y) from the labels of x and y but also to identify the first edge on the shortest path
from z to y. Therefore it is more general than the routing labeling schemes.

A particular routing context where a labeling schemes for NCA may prove useful is the design
of routing labeling schemes for graphs that are close to a tree, say c-decomposable graphs [18, 19]
for ¢ = O(1). These graphs admit a tree-decomposition 7" where each node of T represents a
separator of the graph of size at most c¢. So, one can use a compact labeling of T in order to
determine the nearest separator S between the source z and the destination y. If z is contained
in the component X € T, and ¥y is contained in the component Y € T, then S is precisely the
nearest common ancestor of X and Y. Since, any path from x to y have to cross some node of S,
computing nca(X,Y) from the labels of  and y may simplify the local routing tables.



2 Preliminaries

We denote by (y)x a sequence of objects y1,¥o,...,yr (such as integers or binary strings). For
binary strings a,b € {0,1}", @ <jex b if and only if a precedes b in the lexicographic order on
binary strings. l.e. a is prefix of b or the first bit in which a and b differ is 0 in @ and 1 in b.
An alphabetic sequence (y)j is a sequence of binary strings (b)x, b; € {0,1}", where b; <jex b;, for
all 1 <1 < j < k. Let |s| denote the length of a binary string s € {0,1}". Observe that given
machine words that contain a, b, |a|, and |b|, repectively, in their least significant bits, it is possible
to determine whether a <jex b in a constant number of operations. (For instance, first align ¢ and
b by shifting to the left the smallest string, and then use standard integer comparison operators
on the resulting words. If the two words are then equal — e.g., a was a prefix of b — break the tie
according to the length of a and b). When the strings (b)), are also prefix-free (no string is a prefix
of another) we call (b); an alphabetic code. The following lemma due to Gilbert and Moore [23]
states the result which we need for the alphabetic codes.

Lemma 3 (Gilbert and Moore [23]) A sequence (y)i of positive numbers with n = Y%  y; has
an alphabetic code (b)y where |b;| < logn —logy; + O(1) for all i.

In fact for our purposes it would suffice that (b)) is alphabetic (strings can be prefixes of one
another). We can construct an alphabetic sequence satisfying the length bounds in Lemma 3
for an integer sequence (y)j is in O(k) time as follows. Let s; = 22':1 vi, Ii = [si + 1,8 + yi,
and f; = |logy;]. In the interval I; there must be a number z; such that z; mod ofi = 0. If
$; + 1mod 2fi = 0, then z; = s; + 1. Otherwise z; = s; + 1 — (si + 1 mod 2fi) + 2fi. Hence,
z; can be represented in a word with w = [logn]| bits, having the f; less significant bits set
to 0. Then we can let b; be the bit string consisting of the w — f; most significant bit from z;.
Thus we get alphabetic codes where 1 < |b;| < logn — logy; + 2. The algorithm runs in O(k)
time if machine operations to compute shifting, modulus, and discrete logarithm on O(logn) bit
words are supported. In a machine that does not support such operations we can using O(n)
prepossessing time and space construct a table representing these functions. This will only increase
the preprocessing time of our labeling algorithm which is described in Section 3 by a constant
factor. Note that Mehlhorn [34] gives a somewhat more complicated algorithm that produce an
alphabetic code, (b)y, for an arbitrary sequence (y) of positive real numbers with the same bound
on the lengths, i.e., |b;| < logn — logy; + 2. Mehlhorn’s algorithm can be implemented to run in
O(k) time.

3 Labeling for NCA queries

For a tree T, let |T'| denote its number of nodes. Let 7, be the subtree rooted by v, and let
size(v) = |T,|. As in [26] we divide the tree into disjoint paths. Let parent(v) be the parent
of v, and children(v) be the set of children of v. We classify each node of T' as either heavy
or light as follows. The root is light. For each internal node v, we pick a child w of v, where
size(w) = max {size(z) | z € children(v)} and classify w as heavy. We classify each of the remaining
children of v as light. We call an edge to a light child a light edge, and an edge to a heavy child a
heavy edge. For a node v with a heavy child w, let Isize(v) = size(v) — size(w). The nearest ancestor
of v which is light (possibly v itself if v is light) is denoted by apex(v). By removing the light edges
T is partition into paths, which we call heavy paths. A node w belongs to the same heavy path as
the nodes of the set HP(w) = {v | v € T, apex(v) = apex(w)}. See Figure 1.



Figure 1: Heavy and light nodes are black and white points respectively. Heavy paths are subtrees
composed of heavy edges only (solid edge). In this example, apex(v) = v.

First we traverse the tree once to compute in linear time size(v), lsize(v), apex(v) and the
partition of T into heavy paths. Next we assign a label, hlabel(v), to each node v € T, and a label
llabel(v) to each light node v. These labels are defined as follows.

For the root r, llabel(r) is the empty string. Then, for each light node w # r, llabel(w) is a
binary string such that

e llabel(w) ¢ {llabel(z) | z # w, z € children(parent(w))}.
Let w be any node. Then hlabel(w) is a binary string such that

e hlabel(w) <jex minjey {hlabel(z) | z # w, z € T, N HP(w)}, where lex is the lexicographic or-
der of two strings.

Heavy and light labels can be constructed in linear time as described in Section 2. We remark
that lexicographic codes are not required for light labels, since we just impose that labels of different
light children of a node are different.

Next we assign a label [(v) to each node v € T topdown as follows. We define [(parent(r)), and
llabel(r), to be the empty string. Then for every node v, [(v) = [(parent(apex(v)))-1llabel(apex(v))-
hlabel(v).

A label I(v) consists of the concatenation of alternating heavy and light labels, thus I(v) =
hi-1li-hg-ly---. For a bit string s, we let s[i] be the bit 7 in s. Beside I(v) we need a label k(v) of
the same length, where k(v)[i] = 1 if and only if I(v)[¢] is the beginning of either a light or heavy
label. This is doable because |llabel(v)|, |hlabel(v)| > 1. The label, label(v), assigned to a node
consists of the concatenation of /(v) and k(v). Once heavy and light labels of all the nodes have
been computed, one can perform a depth first traversal [41] of the tree to compute in linear time
[(v) and k(v).

Before showing how to compute the NCA given two labels we bound the length of these labels.
Using the alphabetic code from the preliminary section, we have

¢ |llabel(w)| < loglsize(parent(w)) — log size(w) + O(1), and
o |hlabel(w)| < log X, cnp(w) Isize(v) — loglsize(w) + O(1)
Lemma 4 For any node v € T, |label(v)| = O(logn).

Proof: First, note that [label(w)| = |l(w)|+|k(w)| = 2|I(w)|. The number of heavy labels in [(w) is
at most logn. Hence the additive O(1) terms in the light and heavy labels of I(w) sum to O(logn).



So, in the remaining analysis we skip the additive constant term. We prove by induction on the
depth of the node that |[(w)| < logn — loglsize(w). For a node w, where apex(w) = r, in a tree
with root r, |[(w)| = |hlabel(w)| < logn — loglsize(w) so the statement holds. For another node
w, where apex(w) # r, [(w) = [(parent(apex(w))) - llabel(apex(w)) - hlabel(w). Now, by induction,
|l(parent(apex(w)))| < logn — loglsize(parent(apex(w))), and also by the definitions of the heavy
labels and the light labels we have |llabel(apex(w))| < log Isize(parent (apex(w)))—log size(apex(w)),
and |hlabel(w)| < log > ,cpp(w) lsize(v) — loglsize(w). By summing up the last three bounds and
using the fact that 3, cyp(y) Isize(v) < size(apex(w)) we obtain the lemma. O

Lemma 5 Let x and y be two vertices of T,

1 Ifl(z) = hy Dok bt and U(y) = hy -1y~ hs - 1L--

i---, where l; # i or 1 -t is empty, then
l(nca(x,y)) = hl : ll T hi—l : l,‘_l : hz

2 If () = hy-ly---hi-- and l(y) = hy-ly---hi---, where hi # h;, then l(nca(z,y)) = hy -
Iy <+ hi—y - li—y - mimey {hy, bi}.

Proof: Let z = nca(z,y). By definition [(parent(apex(z))) is a prefix of both [(z) and I(y). Let w

be the heavy child of z. If z € T, y € T}, a,b € children(z) \ {w}, we have case 1; otherwise case 2.

O

To implement the calculation of nca(z,y) described in Lemma 5 we need to be able to identify
the maximum i such that both I(z) and [(y) have hy-ly - - - h;-l; as a prefix. To that end we calculate
the length j; of the maximum common prefix of I(z) and I(y), and the length jo of the maximum
common prefix of k(z) and k(y). Then we take j = min{j1,j2} and calculate whether this bit (jth
from the left) is part of a light label or a heavy label. To easily determine whether bit j occurs
within a light label or a heavy label we can for example add to the label of v a mask containing
a 1 in every bit that belong to a light label or alternatively use a table that counts the parity of
the number of bits set to one in a word. Once we identify whether j occurs within a light or heavy
label we can extract the label of nca(z,y) using straightforward bit manipulations.

Remarks: 1) In case we want to solve the unrestricted DRS problem using a cartesian tree, we can
let all the light labels be an empty string, since a cartesian tree is binary.

2) If we use an alphabetic code for the heavy labels (no heavy label on a path is a prefix of another)
and any prefix code for the light labels then [(v) uniquely identify v, and there is no need to look
at k(v) in order to figure the maximum ¢ such that hy - Iy - - - h; - [; is a prefix of both [(x) and [(y).
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