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Abstract

We consider static one dimensional range searching problems. Theseproblemsare to build
static data structuresfor an integer setS C U, whereU = {0,1,...,2¥ — 1}, which support
various queriesfor integer intervals of U. For the query of reporting all integersin S contained
within aquery interval, we presentan optimal data structur ewith linear spacecostand with query
time linear in the number of integers reported. This result holds in the unit cost RAM model
with word sizew and a standard instruction set. We also presenta linear spacedata structure
for approximate range counting. A range counting query for an interval returns the number of
integersin S contained within the interval. For any constante > 0, our range counting data
structur ereturnsin constanttime an approximate answerwhich is within afactor of at most1 + ¢
of the correctanswer
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1 Intr oduction

Let S be a subsetof the universeU = {0,1,...,2% — 1} for someparameter w. We consider
static data structuresfor storing the set.S such that various types of range search queries
canbeanswerred for S. Our boundsare valid in the standard unit costRAM with word size
w and a standard instruction set. We presentan optimal data structure for the fundamen-
tal problem of reporting all elementsfrom S contained within a given query interval. We
alsoprovide a data structur e that supports an approximate range counting query and show
how this can be applied for multi-dimensional orthogonal range searching. In particular, we
provide newresultsfor the following query operations.

FindAny(a,b), a,b € U: Report any elementin S N [a, b] or L if thereis no suchelement.
Report(a,b), a,b € U: Report all elementsin S N [a, b].
Count.(a,b), a,b € U,e > 0: Return aninteger k suchthat |SN[a, b]| < k < (1+¢)|SN[a, b]].

Let n denotethe sizeof S and let v = 2* denotethe sizeof universeU. Our main result
is a static data structure with O(n) spacecostthat supports the query FindAny in constant
time. As a corollary, the data structure allows Report in time O(k), where k is the number
of elementsto be reported.

Furthermor e, we give linear spacestructuresfor the approximate range counting prob-
lem. That is, for any constante > 0, we presenta data structur e that supports Count, in
constanttime and usesO(n) space.

The preprocessingime for the mentioneddata structur esis expectedtime O(n+/logu).

1.1 Relatedwork

Efficient static data structuresfor range seaiching have been studied intensively over the
past 30 years, for surveysand books seee.g [1, 18, 20]. In one dimension there has been
much focuson the following two fundamental problems: the membershipproblemand the
predecessoproblem Theseproblemsaddressthe following queriesrespectvely:

Member(a), a € U: Return yesiff a € S.

Pred(a), a € U: Return the predecessoof q, i.e.,max(S N [0, a]) or L if there are no such
element.

The Member query is easily solved by FindAny, Report or Count, by restricting the
guery to unit size.On the other hand, it is straightforward to computethesethr eequeriesby
at mosttwo predecessoqueriesgivenan additional sorted (relativeto U) list of the points S,
where eachpoint is associatedts list rank.

An information theoretic lower bound implies that any data structur e supporting any of
the above queries,including Member, requiresat leastlog (Z) bits, i.e., haslinear spacecost
in terms of w = logu bit words for n < u'~%_ In [12], Fredman,K omlosand Szemeedi give
an optimal solution for the static membershipproblem, which supports Member in constant
time and with spacecostO(n). In contrast, the predecessoproblem doesnot permit a data
structur ewith constantquery time for aspacecostboundedby n°™"). This wasfirst proved by
Ajtai [3], and later Beameand Fich [8] improved Ajtai’ slower bound and in addition gave a
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matching upper bound of O(min(loglogu/ logloglogu, 1/log n/loglogn)) onthe query time
for spacecostO(n!*?) for any constants > 0. Beamand Fich’s lower bound holds for exact
counting queries,i.e.,Count, wheres = 0. Our resultshovsthat it is possibleto circumvent
this lower bound by allowing a slackin the precisionof the result of the queries.

For data structur eswith linear spacecost,Willard [24] providesa data structur ewith time
O(loglogu) for predecessoqueries. Anderssonand Thorup [7] show how to obtain a dy-
namic predecessoguery with boundsO (min(log log u-log log n/ loglog log u, 1/logn/loglogn)).
For linear spacecost,theseboundswere previously alsothe bestknown for the queriesFind-
Any, Report and Count,. However, for superlinear spacecost, Miltersen etal. [19] provide
a data structur e which achievesconstanttime for FindAny with spacecostO(nlogu). Mil-
tersenetal. alsoshow that testingfor emptinessof a rectanglein two dimensionsis ashard as
exactcounting in onedimension. Hence,thereis no hopeof achieving constantquery time for
any of the above query variants including approximate range counting for two dimensions
using spaceat mostn°™,

Approximate data structures Several papersdiscussthe approach of obtaining a speed-upof
a data structure by allowing slack of precisionin the answers. In [17], Matias etal. study
an approximate variant of the dynamic predecessoproblem,in which an answerto a prede-
cessorquery is allowedto be within a multiplicati ve or additive error relative to the correct
universe position of the answer They give several applications of this data structure. In
particular, its usefor prototypical algorithms, including Prim’s minimum spanningtreeal-
gorithm and Dijkstra’ s shortestpath algorithm. The papers[4] and [6] provide approximate
data structuresfor other closelyrelated problems, e.g, for nearest neighbor searching, dy-
namic indexedlists, and dynamic subsetrank.

An important application of our approximate data structure is the static d-dimensional
orthogonal range searching problem. The problem s given a setof points in U¢, to compute
a query for the points lying in a d-dimensionalbox R = [a;,b1] X - - - X [ag, bs]. Known data
structuresproviding sublinear search time have spacecostgrowing exponentialwith the di-
mensiond. This is known asthe “curse of dimensionality” [9]. Hence,for d of moderate
size,a query is often most efficiently computed by a linear scanof the input. A straight-
forward optimization of this approach using spaceO(dn) is to keepthe points sorted by
eachof the d coordinates. Then, for a given query, we can restrict the scanto the dimen-
sion i, where fewest points in S have the ith coordinate within the interval [a;,b;]. This
approach leedsto a time costof O(dt(n) + opt) where opt is the number of points to be
scannedand ¢(n) is the time to compute a range counting query for a given dimension. Us-
ing the previous best data structuresfor the exact range counting problem, this approach
has a time cost of O(d min(loglogu, \/logn/loglogn) + opt). Using our data structure
supporting Count, and FindAny, we improve the time for this approach to optimal time
O(d + opt(1 + €)) = O(d + opt) within the samespacecost. A linear scanbehaveswell in
computational models, which considera memory hierarchy, see[2]. Hence,even for large
valuesof opt, it is lik ely that the computation neededto determine the dimensionfor the scan
majorizesthe overall time cost.




1.2 Organization

The paper is organizedasfollows: In Section2 we defineour model of computation and the
problemswe consider and statedefinitions and known resultsneededin our data structures.
In Section3 wedescribeour data structur e for the rangereporting problem,and in Section4
we describehow to preprocessand build it. Finally, in Section5 we describehow to extend
the rangereporting data structur e to support approximate range counting queries.

2 Preliminaries

A query Report(a, b) canbeimplementedby first querying FindAny(a, b). If anz € SNJa, b]
is returned, we report the result of recursively applying Report(a,z — 1), then z, and the
result of recursively applying Report(z + 1,b). Otherwise the empty setis returned. Code
for the reductionis givenin Figure 2. If k£ elementsarereturned,a straightforward induction
shows that there are 2k + 1 recursive calls to Report, i.e. at most 2k + 1 callsto FindAny,
and we have therefore the following lemma.

Lemmal If FindAny is supportedn timeat mostt, thenReport canbesupportedn time O(¢-
k), wherek is the numberof elementgeported.

The model of computation, we assumethr oughout this paper, is a unit costRAM with
word sizew bits, where the setof instructions includesthe standard booleanoperations on
words, the arbitrary shifting of words, and the multiplication of two words. We assumethat
the model hasaccesgo a sequenceof truly random bits.

For our constructions we needthe following definitions and results. Given two words z
and y, we let z & y denotethe binary exclusve-or of z and y. If z is a w bit word and i
a nonnegatve integer, we let z | ¢ and = 1 ¢ denotethe rightmost w bits of the result of
shifting z ¢ bits to the right and i bits to the left respectvely, i.e.z | i = 2 div 2¢ and
1 4= (x-2") mod 2¥. For aword z, we let msh(z) denotethe most significant bit position
in z that containsa one,i.e. msb(z) = max{i | 2° < z} for z # 0. We define msb(0) = 0.
Fredmanand Willard in [13] describehow to computemsb in constanttime.

Theorem 1 (Fredmanand Willard [13]) Givena w bit word z, the index msb(z) can be com-
putedin constanttime, provideda constantnumber of wordsis known which only dependon
the word sizew.

Essentialto our range reporting data structure is the efficient and compactimplemen-
tation of sparsearrays. We define a sparsearray to be a static array where only a limited
number of entries are initialized to contain specificvalues. All other entries may contain ar-
bitrary information, and crucial for achieving the compactrepresentation: It is not possible
to distinguish initialized and not initialized entries. For the implementation of sparsearrays
we will adopt the following definition and resultabout perfecthashfunctions.

Definition 1 A function h : [m] — [] is perfectfor asetS C [m]if his1-1on S. A family H
is an (m, n, £)-family of perfecthash functions, if for all subsetsS C [m] of sizen thereis a
function h € H : [m] — [{] thatis perfectfor S.



The questionof representingefficiently families of perfecthashfunctions hasbeenthr oughly
studied. Schmidt and Siegel[21] describedan (m, n, O(n))-family of perfect hashfunctions
where eachhashfunction canberepresentedby ©(n + log log m) bits. Jacobsand van Emde
Boas[16] gave a simpler solution requiring O(nloglogn + loglogm) bits in the standard
unit costRAM modelaugmentedwith multiplicati ve arithmetic. Jacobsand van Emde Boas
result sufficesfor our purposes. The construction in [16] makesrepeateduse of the data
structure in [12] where someprimes are assumedto be known. By replacing the applica-
tions of the data structuresfrom [12] with applications of the data structure from [10], the
randomized construction time in Theorem 2 follows immediately.

Theorem 2 (Jacobsand van Emde Boas[16]) Thereis an (m,n,O(n))-family of perfecthash
functions # sudh that any hashfunction » € # canberepresentedn ©((nloglogn)/w) words
and evaluatedin constanttime for m < 2%. The perfecthashfunction can be constructedin
expectedime O(n).

A sparsearray A canbeimplementedusing a perfect hash function asfollows. Assume
A hassizem and contains n initialized entries eachstoring b bits of information. Using a
perfect hashfunction A for the n initialized indicesof A, we canstore the n initialized entries
of Ain anarray B of sizen, suchthat A[i] = B[h(7)] for eachinitialized entry A[i]. If A[i]is
not initialized, B[h(:)] is an arbitrary of the n initialized entries (dependingon the choiceof
h). From Theorem 2 we immediately have the following corollary.

Corollary 1 A sparsearray of sizem with n initialized entriesead containing b bits of infor-
mation can with expectegreprocessindime O(n) bestoredusing spaceO(n - b/w) words,and
lookupsare supportedn constanttime, if loglogn < b < w andm < 2%.

For the approximate range counting data structure in Section5 we needthe following
result achieved by Fredman and Willard for storing small sets(in [14] denoted Q-heaps;
theseare actually dynamic data structures,but we only needtheir static properties). For a
setS and an elementz we definerank (z) = [{y € S |y < z}|.

Theorem 3 (Fredmanand Willard [14]) Let S bea setof w bit wordsand an integern, where
S| < (logn)'/* andlogn < w. Usingtime O(|S|) and spaceO(|S|) words,a datastructurecan
be constructedthat supportsrank, (x) queriesin constanttime, given the availability of a table
requiring spaceand preprocessindime O(n).

The result of Theorem 3 can be extendedto setsof size (logn)¢ for any constantec > 0,
by constructing a (logn)'/*-ary search treeof height 4c with the elementsof S stored at the
leavestogether with their rank in S, and where internal nodesare representedby the data
structur esof Theorem 3. Top-down searchesthen take time proportional to the height of the
tree.

Corollary 2 Let ¢ > 0 befixed constantand S a setof w bit words and an integer n, where
|S| < (logn)¢ andlogn < w. Using time O(|S|) and spaceO(|S|) words, a data structure
can be constructedthat supportspredecessoqueriesin constanttime, given the availability of
atablerequiring spaceand preprocessingime O(n).



8 9 10 11 1213 14 15

Figurel: ThebinarytreeT for thecasew=4, S = {3,6,7,12,14}, andH = 2. ThesetS inducesthesets
P={1,2,3,4,5,7,9,11,14,15} andV = {1,2, 7,11}, andthetwo sparserraysB andD.

3 Rangereporting data structure

In this sectionwe describe a data structur e supporting FindAny(a, b) queriesin constant
time. The basiccomponentof the data structur eis (the implicitly representationof) a perfect
binary treeT with 2% leaves,i.e. a binary treewhere all leaveshave depth w, if the root has
depth zero. The leavesare numbered from left-to-right [2*], and the internal nodesof 7" are
numbered 1,... ,n — 1. The root is the first node and the children of node v are nodes2v
and 2v + 1, i.e. like the numbering of nodesin an implicit binary heap[11, 25]. Figure 1
showsthe numbering of the nodesfor the casew = 4. The treeT hasthe following properties

(see[15]):

Fact 1 The depthof an internal nodew is msb(v), and the d*" ancestorof v is v | d, for 0 <
d < depth(v). The parentof leaf a is the internal node2*~" + (a | 1), for 0 < a < 2%. For
0 < a < b < 2%, the nearestcommonancestorof the leavesa and b is the 1 + msb(a @ b)*
ancestorof the leavesa andb.

For anodev in T, welet left(v) and right(v) denotethe left and right children of v, and we
let T,, denotethe subtreerootedat v and S, denotethe subsetof S where xz € S, if, and only
if, z € S, and leaf x is a descendenbf v. Welet P bethe subtreeof T' consistingof the union
of the internal nodeson the paths from the root to the leavesin S, and welet V' be the subset
of P consistingof the root of 7" and the nodeswhere both childrenarein P. WedenoteV the
setof branching nodes. Sinceeachleaf-to-root path in 7" containsw internal nodes,we have
|P| < n-w, and sinceV containsthe root and the setof nodesof degreetwo in the subtree
definedby P, wehave |V | = n—1, if both childrenof the rootarein P and otherwise|V| = n.

To answera query FindAny(a, b), the basicidea is to compute the nearestcommon an-
cestor v of the nodesa and b in constanttime. If S N [a,b] # 0, then either max Sies(v)
Or min Sygn(y) IS CONtainedin [a, b], since|a, b] is contained within the interval spannedby
v, and a and b are spannedby the left and right child of v respectvely. Otherwise what-
ever computation we do cannot identify an integerin S N [a,b]. At most nw nodessatisfy
S, # 0. E.g. to compute FindAny(8,13), we have v = 3, max Sieq(yy = max Sg =1, and
min Signe(vy = minS; = 12. By storing thesenodesin a sparsearray together with min S,
and max S, we obtain a data structur e using spaceO(nw) words, which supports FindAny



Proc Report(a, b)
z = FindAny(a, b)
if z #1 then
Report(a,z — 1)
outpu(z)
Report(z + 1, b)

Proc FindAny(a, b)

if a < bthen
H =11 (msb(w) |1)
d = msb(a @ b)

v =11 (w-1))+(@l1))id
z =ul((w—1—-d) A (H-1))
v = Blz] ?V[u ] D[u]] : V[z|D][z]]
for z € {v.left.m, v.left. M, v.right.m, v.right.M }
if z € [a,b] thenreturn z
return L

Figure2: Implementatiorof the queriesReport andFindAny.

in constanttime. In the following we describehow to reducethe spaceusageof this approach
to O(n) words.

We considerthe treeT aspartitioned into a setof layers eachconsistingof H consecutve
levelsof T, where H = 1 1 (msb(w) | 1), i.e. H = 2l3'°8%] or equivalently H is the power of
two, where $\/w < H < /w. For anodeu, we let 7(u) denotethe nearestancestorz of u,
suchthat depth(z) mod H = 0. If depth(u) mod H = 0, then 7(u) = u. Since H is a power
of 2, we can computexz mod H asz A (H — 1), i.e.for an internal node u, we can compute
m(u) = u | (depth(u) A (H —1)). E.g.in Figurel, H =2and7(9) =9 3A (2-1)) =
9]1=4.

The data structur e for the setS consistsof threesparsearrays B, D, and V, eachbeing
implemented accordingto Corollary 1. The arrays B and D will be usedto find the nearest
ancestorof anodein P that is a branching node.

B : A bit-vectorthat for eachnodez in P with 7(z) = z (or equivalently depth(z) mod H =
0), has B[z] = 1 if, and only if, there existsa nodew in V with 7(u) = 2.

D : A vectorthat for eachnodew in P wheren(u) = u or B[r(u)] = 1 storesthe distanceto
the nearestancestorv in V' of u, i.e. D[u] = depth(v) — depth(u).

V' . A vector that for eachbranching nodew in V' storesarecord with the fields: left, right,
m and M, where V[v].m = min S, and V[v].M = max S, and left (and right respec-
tively) is a pointer to the record of the nearestdescendent, in V' of v in the left (and
right respectvely) subtree of v. If no suchu exists,then V[v].left = v (respectvely
Vv].right = v).

Giventhe abovedatastructure FindAny(a, b) canbeimplementedby the codein Figure2.
If a > b, the query immediately returns 1. Otherwise the value H is computed, and the
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nearest common internal ancestoru in T of the leavesa and b is computed together with
z = w(u). Using B, D, and V we then compute the nearest common ancestor branching
nodew in V of the leavesa and b. In the computation of v an error may be intr oduced,since
the arrays B, D and V are only well definedfor a subsetof the nodesof T'. However, aswe
show next, this only happenswhen S N [a,b] = @. Finally we checkif one of the m and M
valuesof v left and v.right isin [a, b]. If oneof the four valuesbelongsto [a, b], wereturn such
avalue. Otherwise L isreturned.

As an exampledconsiderthe query FindAny(8,13) for the setin Figure 1. Here d = 2,
u=(84+4)]13=32=31(B83-2) A1) =3]1=1. SinceB[l] =1, wehave D[u] =1,
andv = V[u | D[u]] = V[3 | 1] = V][1]. The four valuestestedare the m and M valuesof
V[2]and V[7],i.e.{3,7,12,14}, and wereturn 12.

Theorem 4 The data structure supportsFindAny in constanttime and Report in time O(k),
wherek is the numberof elementseported. The datastructure requiresspaceO(|S|) words.

Proof. The correctnessof FindAny(a, b) can be seenasfollows: If SN [a,b] = ), then the
algorithm returns L, sincebefore returning an elementthereis a checkto find if the element
is containedin the interval [a, b]. Otherwise S N [a, b] # 0.

If « = b € S, then by Fact 1 the computedu = 2! + o | 1 is the parent of ¢ and
z=ud (w=1)A(H-1)) = u | (depth(u) mod H) = «n(u). We now argue that v
is the nearest ancestor node of the leaf o that is a branching node. If Sy, = {a}, then
Trw) NV = 0 and B[r(u)] = 0, and v is computedas V[r(u) | D[r(u)]], which by definition
of D is the nearestancestorof 7(u) that is a branching node. Otherwise | Sy(,)| > 2, implying
Trwy NV # 0 and B[n(u)] = 1. By definition D[u] is then definedsuchthat V[u | D[u]] is
the nearestancestorof u that is a branching node. We concludethat the computedv is the
nearest ancestorof the leaf a that is a branching node. If the leaf a is containedin the left
subtreeof v, then v.left = v and v.m = a. It followsthat v.left.m = a. Similarly, if the leaf a
is containedin the right subtreeof v, then v.right. M = a .

For the casewhere S N [a,b] # 0 and a < b, we have by Fact 1 that the computednode u
is the nearest common ancestor of the leavesa and b, where depth(u) = w — (d + 1), and
that z = v | (w—1—-d) A (H—1)) = u | (depth(u) mod H) = m(u). Similarly to the
casea = b, we have that the computednode v is the nearestancestorof the nodew that is a
branching node. If v = u, i.e. v is the nearestcommon ancestorof the leavesa and b, then
S|eft(1,) N [CL, b] #* 0 or Sright('u) N [CL, b] #* 0. If ‘S|eft(1,)‘ > 2and S|eft(v) N [a, b] #+ 0, then v left # v
andv.left. M € [a,b]. If |Siere(v)| = 1 @and Sier(w) N[a, b] # 0, thenv left = v andv.left.m € [a, b].
Similarly if Seghe(wy N [a,b] # 0, then either v.right.m € [a, b] or v.right.M € [a, b]. Finally
we consider the casewhere v # u, i.e. either u € Tieqy) OF U € Thight(v)- If u € Tiee(n)
and |Ses(wy| = 1, then vleft = v and Sieqy = {v.m} = {v.left.m} C [a,b]. Similarly if
U € Tiight(v) AN [Syight(v)| = 1, then v.right = v and Syignewy = {v. M} = {v.right. M} C |[a, b].
If u € Tiee(v) AN |Sieev)| > 2, then Ty, e, is either a subtreeof Tieg(y) OF Trighe(w), iIMplying that
vleft. M € [a,b] or vleft.m € [a,b] respectvely. Similarly if v € Tiighev) and |Srighe(w)| > 2,
then either v.right.M € [a, b] or v.right.m € [a, b].

We concludethat if SN [a,b] # 0, then FindAny returnsan elementin S N [a, b].

The fact that FindAny takesconstanttime followsfrom Theorem 1 and Corollary 1, since
only a constantnumber of booleanoperations and arithmetic operationsis performed plus
two calls to msb and threesparsearray lookups. The correctnessof Report and the O(k)
time bound follows from Lemma 1.



The spacerequired by the data structur e dependson the sizerequiredfor the threesparse
arrays B, D, and V. The number of internal levels of T with depth mod H = 0 is [w/H],
and therefore the number of initialized entriesin B isat mostn[w/H]| = O(ny/w). Similarly,
the number of initialized entriesin D dueto 7(u) = uisat mostn[w/H|. For the number of
initialized entriesin D dueto B[r(u)] = 1, we obsewe that the subtreer, of height H rooted
at z = w(u) by definition containsat leastonenodefrom V. If |7, N V| = s, then 7, hasat
most s + 1 leaveswhich are nodesin P, and we have |7, N P| < (s + 1)H < 2Hk. Sincer,
contributesto B with at most2H|r, N V| entriesand |V'| < n, the total number of initialized
entries contributed to B dueto B[x(u)] = 1 is boundedby 2Hn. The number of initialized
entriesin B is therefore boundedby 2Hn + nfw/H| = O(ny/w). Finally, by definition, V'
containsat mostn initialized entries.

Eachentry of B, D, and V' requiresspace:1, [logw], and O(w) bits respectvely, and B,
D, and V have O(ny/w), O(ny/w), and at most n initialized entries respectvely. The total
number of words for storing the three sparsearrays by Corollary 1 is therefore O((logw -
nyvw +w - n)/w) = O(n) words. It followsthat the total spacerequired for storing the data
structureis O(n) words. O

4 Construction

In this sectionwe describe how to construct the data structure of the previous sectionin
expectedtime O(ny/w).

Theorem5 Given an unorderedsetof n distinct integersead of w bits, the range reporting
datastructurein Section3 canbeconstructedn expectedime O(ny/w).

Proof. Initially S can be sorted in spaceO(n) with the algorithm of Thorup [23] in time
O(n(loglogn)?) = O(ny/w) or with the randomized algorithm of Anderssonet al. [5] in
expectedtime O(nloglogn) = O(ny/w). Therefore without lossof generality we can assume
S={a,...,a,} wherea; < a;; forl <i<n.

We obsewethat v € V' if, and only if, v is the root or v, is the nearestcommon ancestor
of a; and a; 1 for somei, where1 < ¢ < n. Similarly asfor the FindAny query, we can by
Fact 1 find the nearestcommonancestorv; € V induced by «a; and a;,; in constanttime by
the expression

vi=(11(w—-1)) 4 (a; 1)) | msb(a; ® a;y1) -

The nodesv € V form by the pointers v.left and v.right a binary treeTy. The defined
sequencey, ... ,v, 1 forms aninorder traversal of 7y,. Furthermor e the nodessatisfy heap
order with respectto their depthsin 7". Recall that depth(v;) = msb(v;) can be computedin
constanttime.

The inorder together with the heap order on the depth of the v; nodesuniquely defines
Ty sincetheseare exactly the constraints determining the shapeof the treapsintr oduced
by Seideland Aragon [22]. By applying an O(n) time treap construction algorithm [22] to
vy, Vg, ... ,Un_1 Wegetthe required left and right pointers for V. The m and M fieldsfor the
nodesin V' canbe constructedin a bottom-up traversalof 7y in time O(n).



The information to be stored in the arrays B and D can by another traversal of Ty, be
constructedin time linear in the number of nodesto be initialized. Consider an edge(u, v)
in Ty, where v is the parent of u in Ty, i.e. v is the nearest ancestornode of « in T that
is a branching nodeor v isthe root. Let u = ug,u1,... ,uq = v be the nodeson the path
from v to v in T suchthat depth(u;) — depth(u;41) = 1. While processinghe edge(u, v) we
will computethe information to be stored in the sparsearrays for the nodesug, u1, ... , uq_1,
i.e. the nodeson the path from u to v exclusve v. From the defintion of B and D we getthe
following: For the array B westore B[n(u)] = 1, if depth(7(u)) > depth(v), and Blu;] = 0 for
alli=0,...,d—1,wheredepth(u;) < depth(m(u)) and depth(u;) mod H = 0. For the array
D westore D[u;] = depth(v) — depth(u;) foralli = 0,... ,d — 1 wheredepth(u;) mod H =0
or depth(u;) < H[depth(v)/H]| or depth(u;) > depth(m(u)). Finally, we store for the root
B[1l] =1and D[1] = 0.

Constructing the three sparsearrays, after having identified the O(n/w) entries to be
initialized, by Corollary 1 takesexpectedtime O(n/w). a

5 Approximate range counting

In this sectionwe provide a data structure for approximate range counting. Let S C U
denotethe input set,and let » denotethe sizeof S. The data structur e usesspaceO(n) words
suchthat we can support Count, in constanttime, for any constants > 0.

WeassumeS hasbeenpreprocesseduchthat in constanttime wecancomputeFindAny(a, b)
for all a,b € U. Nextwe havea sparsearray suchthat wefor eachelementz € S cancompute
rankg(z) in constanttime. Both thesedata structuresuseO(n) space.

Definecount(a, b) = |S N [a, b]|. We needto build a data structure which for any a,b € U
computesan integer k£ suchthat count(a, b) < k < (1 + €)count(a, b).

In the following we will usethe obsewation that for a,b € S, a < b, it is easyto compute
the exactvalue of count(a, b). This value can be expressedasrankg(b) — rankg(a) + 1 and
thus the computation amountsto two lookupsin the sparsearray storing the ranks.

We reducethe task of computing Count.(a, b) to the casewhere either « or b arein S.
First, it is easyto checkif S N [a, b] is empty, i.e.,FindAny(a, b) returns L, in which casewe
simply return O for the query. Hence,assumeS N [q, b] is non-empty and let ¢ be any element
in this set. Then for any integersk, and &, suchthat count(a, ¢) < k, < (1+4¢)count(a, ¢) and
count(c, b) < k, < (14 ¢)count(c, b), it holdsthat count(a, b)) = count(a, c¢) 4+ count(c, b) — 1 <
ko + ks — 1 < (1 + e)count(a, b). Hence,we can return Count.(a,c) — Count.(c,b) — 1 as
the answerfor Count.(a,b), where ¢ € S N [a,b] is an integer returned by FindAny(a, b).
Clearly, both calls to Count, satisfy that one of the endpointsisin S, i.e., the integer c. In
the following we can thus without loss of generality limit ourselvesto the casefor a query
Count,(a, b) with a € S (the other caseb € S is treatedsymmetrically).

We start by describing the additional data structuresneeded,and then how to compute
the approximate range counting query using these. Definep = [logn], and J = {z €
S |(rankg(z) — 1) mod p = 0 }Umax S. We construct the following additional data structures
(seeFigure 3).

JumpR: For eachelement; € J we store the setJumpR(j) = {y € S |count(j,y) = 2° Ai €
[0,p] }.



JnodeR: For eachelements € S we store the integer JnodeR s) being the successonf s in
J.

LN : For eachelement;j € J westorethe setLN (j) = {i € S|j = JnodeR()}.

JumpR(10)

[ Taaofao T T o[ [rofao [ for] [ Jer[ T T [ erler] [ T [ [o7[34aa] [aafaa] [ [sdfar] [ T [ [azlarl Jaz[ [ faz] T [ Teafoa] [oa [ [ [ [ Tetfeale?] |

(PO T T DRI T X T DA T T T LT TR XD TR LT T DX DT R T T DX XTI T T DX ]

0123 10 20 27 30 34 40 47 50 60 61 62 63
LN(10)

Figure 3: Extensionof the datastructureto supportCount. queries.w = 8, n = |S| = 27, andp =
[logn| = 5.

Each of the setsJumpR and LN have sizeboundedby p < log|U|, and henceusing the
Q-heapsfrom Corollary 2, we cancomputepredecessorfor thesesmall setsin constanttime.
These@-heapshave spacecostlinear in the setsizes. Sincethe total number of elementsin
the structures JumpR and LN is O(|S]), the total spacecostfor thesestructuresis O(|S]).
Furthermor e, for the elementsin S givenin sorted order, the total construction of thesedata
structuresis alsoO(|S]).

To determine Count.(a, b), where a € S, we iterate the following computation until the
desired precisionof the answeris obtained.

Let ; = JnodeRa). If j > b, return R + count(a, Pred ;) (b)). Otherwise, j > b,
and we increasek by count(a, j) — 1. Let y = Predympr;)(b) and i = rankyumprg)(y) — 1.
Now count(j,y) = 2° < count(j,b) < 2°Tl. Weincreasek by 2°. Now k& = count(a,y) and
count(y,b) < 2. If y = bwereturn k. If (k+ 2°)/k < 1 + ¢, we are alsosatisfiedand return
k + 2¢. Otherwise we iterate oncemore, now to determine Count.(y, b).

Theorem 6 The datastructure usesspaceO(|S|) wordsand supportsCount, in constanttime
for any constants > 0.

Proof. From the obsewations above we concludethat the structure usesspaceO(n) and
expectedpreprocessingime O(n). Eachiteration takesconstanttime, and next we show that
the number of iterations is at most! < 1 + [log(1/¢)]. Let k = 27 + f, f < 21, after the
first iteration. In the Ith iteration we either return count(a, b) or k¥ + 2¢ > count(a, b), where
i < I —1+1.In the latter casewe have k < count(a,b) < k + 2'7'~'. We needto show that
k + 2 < (1 + &)count(a, b). Sincek < count(a, b), we canwrite k + 2° < (1 + ¢)k. We have
2! < ke. Sincei < I — 1+ 1andk > 27 + f,wehave2!~'-! < 2/¢ and the resultfollows. O
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