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Abstract

We consider static one dimensional range searching problems. Theseproblemsare to build
static data structur es for an integer set ����� , where �	�	
���
���
�������
���������� , which support
various queries for integer intervals of � . For the query of reporting all integers in � contained
within a query interval, wepresentan optimal data structur ewith linear spacecostand with query
time linear in the number of integers reported. This result holds in the unit cost RAM model
with word size � and a standard instruction set. We also presenta linear spacedata structur e
for approximate range counting. A range counting query for an interval returns the number of
integers in � contained within the interval. For any constant � ��� , our range counting data
structur ereturnsin constanttime an approximateanswerwhich is within a factor of at most �"!#�
of the correctanswer.
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1 Intr oduction

Let ( be a subsetof the universe )+*-,�.0/213/245424�/76�8:9;1=< for someparameter > . Weconsider
static data structures for storing the set ( such that various types of range search queries
can be answered for ( . Our boundsare valid in the standard unit costRAM with word size
> and a standard instruction set. We presentan optimal data structure for the fundamen-
tal problem of reporting all elementsfr om ( contained within a given query interval. We
alsoprovide a data structure that supports an approximate range counting query and show
how this can beapplied for multi-dimensional orthogonal range searching. In particular , we
provide newresultsfor the following query operations.

FindAny ?A@B/7C�D�/E@B/7CGFH) : Report any elementin (JILKM@B/7CON or P if there is no suchelement.

Report ?Q@B/7C�D�/E@R/OCGFH) : Report all elementsin (JISKM@R/OC7N .
Count T2?A@B/7C�DU/V@B/7CGFW)V/�XZY�. : Return an integer [ suchthat \M(]I^KM@R/OC7N�\"_`[a_	?b1dcGX3De\M(]I^Kf@B/7CON�\ .

Let g denote the sizeof ( and let h�*i6 8 denotethe sizeof universe ) . Our main result
is a static data structure with jk?lgmD spacecost that supports the query FindAny in constant
time. As a corollary, the data structure allows Report in time jk?A[nD , where [ is the number
of elementsto be reported.

Furthermor e, we give linear spacestructuresfor the approximate range counting prob-
lem. That is, for any constant XWop. , we presenta data structure that supports Count T in
constanttime and usesjq?QgrD space.

The preprocessingtime for the mentioneddata structuresis expectedtime jk?lgts uwv3x]hyD .

1.1 Relatedwork

Efficient static data structures for range searching have been studied intensively over the
past 30 years, for surveysand books seee.g. [1, 18, 20]. In one dimension there has been
much focuson the following two fundamental problems: the membershipproblemand the
predecessorproblem. Theseproblemsaddressthe following queriesrespectively:

Member ?A@zD�/E@{FH) : Return yesiff @�F|( .

Pred ?A@zD�/}@aF~) : Return the predecessorof @ , i.e., �����r?�(�I~Kf.0/O@�N�D or P if there are no such
element.

The Member query is easily solved by FindAny, Report or Count T by restricting the
query to unit size.On the other hand, it is straightforward to computethesethreequeriesby
at most two predecessorqueriesgivenan additional sorted (relative to ) ) list of the points ( ,
where eachpoint is associatedits list rank.

An information theoretic lower bound implies that any data structure supporting any of
the above queries,including Member, requiresat least uwv3x�����e� bits, i.e.,haslinear spacecost
in terms of >`*`uwv3x�h bit words for g|_;hr���z�n���A� . In [12], Fredman,KomlósandSzemeredi give
an optimal solution for the static membershipproblem,which supportsMember in constant
time and with spacecost jq?QgmD . In contrast, the predecessorproblem doesnot permit a data
structurewith constantquery time for aspacecostboundedby gr�����A� . This wasfirst provedby
Ajtai [3], and later Beameand Fich [8] impr ovedAjtai’ s lower bound and in addition gavea
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matching upper bound of jq?Q�k�w��?Qu�v3x]uwv3x�h���uwv3x�u�v3x]uwv3x�h�/�� uwv3x]gm��u�v3x�uwv3x�gmD�D on the query time
for spacecost jk?lgt�A�n�UD for any constant �ko`. . Beamand Fich’s lower bound holds for exact
counting queries,i.e.,Count T where X#*�. . Our result shows that it is possibleto circumvent
this lower bound by allowing a slack in the precisionof the result of the queries.

For datastructureswith linear spacecost,Willard [24] providesadatastructurewith time
jq?Qu�v3x�uwv3x]h�D for predecessorqueries. Anderssonand Thorup [7] show how to obtain a dy-
namicpredecessorquery with bounds jq?Q�k�w��?Qu�v3x]uwv3x�h� ¡uwv3x�u�v3x]gm��uwv3x�u�v3x]uwv3x�h�/ � uwv3x]gm��u�v3x�uwv3x]grD�D .
For linear spacecost,theseboundswerepreviously alsothe bestknown for the queriesFind-
Any, Report and Count T . However, for superlinear spacecost,Miltersen et al. [19] provide
a data structure which achievesconstant time for FindAny with spacecost jk?lg¢uwv3x]h�D . Mil-
tersenetal. alsoshow that testingfor emptinessof a rectanglein two dimensionsis ashard as
exactcounting in onedimension.Hence,thereis no hopeof achieving constantquery time for
any of the above query variants including approximate range counting for two dimensions
usingspaceat most gr�����A� .

Approximate data structures Several papersdiscussthe approachof obtaining a speed-upof
a data structure by allowing slack of precisionin the answers. In [17], Matias et al. study
an approximatevariant of the dynamic predecessorproblem,in which an answerto a prede-
cessorquery is allowed to be within a multiplicati ve or additive error relative to the correct
universe position of the answer. They give several applications of this data structure. In
particular , its usefor prototypical algorithms, including Prim’ s minimum spanning tr eeal-
gorithm and Dijkstra’ sshortestpath algorithm. The papers[4] and [6] provide approximate
data structuresfor other closelyrelated problems,e.g., for nearest neighbor searching, dy-
namic indexedlists, and dynamic subsetrank.

An important application of our approximate data structure is the static £ -dimensional
orthogonal range searching problem. The problem is given a setof points in )G¤ , to compute
a query for the points lying in a £ -dimensionalbox ¥-*¦KM@ � /7C � N¨§© e e R§©KM@ ¤ /7C ¤ N . Known data
structuresproviding sublinear search time have spacecostgrowing exponentialwith the di-
mension £ . This is known as the “curse of dimensionality” [9]. Hence, for £ of moderate
size,a query is often most efficiently computed by a linear scanof the input. A straight-
forward optimization of this approach using space jq?A£�gmD is to keep the points sorted by
eachof the £ coordinates. Then, for a given query, we can restrict the scanto the dimen-
sion ª , where fewest points in ( have the ª th coordinate within the interval KM@3«¬/7CO«�N . This
approach leedsto a time cost of jk?Q£3­�?QgmDVc	v3®0¯7D where v3®0¯ is the number of points to be
scannedand ­�?QgrD is the time to computea range counting query for a given dimension. Us-
ing the previous best data structures for the exact range counting problem, this approach
has a time cost of jk?Q£E�k�w��?Qu�v3x]uwv3x�h�/ � u�v3x]gm��uwv=x�uwv3x�g�D°c±v=®0¯UD . Using our data structure
supporting Count T and FindAny, we impr ove the time for this approach to optimal time
jq?A£�c`v3®"¯d?�1°c`²7D�D³*´jk?Q£µc�v3®0¯7D within the samespacecost. A linear scanbehaveswell in
computational models,which consider a memory hierarchy, see[2]. Hence,even for large
valuesof v3®0¯ , it is lik ely that the computation neededto determinethe dimensionfor the scan
majorizes the overall time cost.
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1.2 Organization

The paper is organizedasfollows: In Section2 we defineour model of computation and the
problemsweconsider, and statedefinitions and known resultsneededin our data structures.
In Section3 wedescribeour data structure for the rangereporting problem,and in Section4
we describehow to preprocessand build it. Finally, in Section5 we describehow to extend
the range reporting data structure to support approximate rangecounting queries.

2 Preliminaries

A query Report ?A@B/7C�D canbeimplementedby first querying FindAny ?A@B/7C�D . If an ¶·FW(°IµKM@R/OC7N
is returned, we report the result of recursively applying Report ?Q@B/�¶·9¸1dD , then ¶ , and the
result of recursively applying Report ?l¶{c¹13/7C�D . Otherwise the empty set is returned. Code
for the reduction is givenin Figure2. If [ elementsarereturned,a straightforward induction
shows that there are 63[ºc¹1 recursive calls to Report, i.e. at most 6=[ºc¸1 calls to FindAny,
and wehave therefore the following lemma.

Lemma 1 If FindAny is supportedin timeat most­ , thenReport canbesupportedin time jq?»­d 
[nD , where [ is thenumberof elementsreported.

The model of computation, we assumethroughout this paper, is a unit cost RAM with
word size > bits, where the set of instructions includes the standard booleanoperationson
words, the arbitrary shifting of words, and the multiplication of two words. Weassumethat
the modelhasaccessto a sequenceof truly random bits.

For our constructions we needthe following definitions and results. Given two words ¶
and ¼ , we let ¶J½	¼ denote the binary exclusive-or of ¶ and ¼ . If ¶ is a > bit word and ª
a nonnegative integer, we let ¶�¾¿ª and ¶�À¿ª denote the rightmost > bits of the result of
shifting ¶Hª bits to the right and ª bits to the left respectively, i.e. ¶�¾¿ª�*Á¶ Ân��Ã 6 « and
¶ À{ª]*Ä?l¶: �6 « D���vzÂ�6 8 . For a word ¶ , we let ��Å�Æ�?l¶�D denotethe most significant bit position
in ¶ that contains a one, i.e. �kÅ�Æ�?»¶�Dµ*Ç�����R,dª�\�6 « _±¶m< for ¶¸È*É. . We define �kÅ�Æm?A.�D³*¦. .
Fredmanand Willard in [13] describehow to compute �kÅ�Æ in constanttime.

Theorem 1 (Fredmanand Willard [13]) Given a > bit word ¶ , the index �kÅ�Æ�?»¶�D can becom-
putedin constanttime, provideda constantnumber of words is known which only dependon
theword size > .

Essential to our range reporting data structure is the efficient and compact implemen-
tation of sparsearrays. We define a sparsearray to be a static array where only a limited
number of entries are initialized to contain specificvalues.All other entries may contain ar-
bitrary information, and crucial for achieving the compactrepresentation: It is not possible
to distinguish initialized and not initialized entries. For the implementation of sparsearrays
wewill adopt the following definition and result about perfecthashfunctions.

Definition 1 A function ÊHË�KÍÌÎN¨Ï K Ð�N is perfect for a set (`ÑpKÍÌÎN if Ê is 1-1 on ( . A family Ò
is an ?QÌ�/Og¨/�Ð2D -family of perfect hash functions, if for all subsets(ÓÑiKÍÌÎN of size g there is a
function ÊJFJÒÔËyKÍÌÎN�Ï K Ð�N that is perfectfor ( .
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Thequestionof representingefficiently familiesof perfecthashfunctionshasbeenthroughly
studied. Schmidt and Siegel[21] describedan ?QÌ�/Og¨/Ujq?QgrD�D -family of perfect hashfunctions
whereeachhashfunction canberepresentedby Õq?Qg�cHuwv=xÖu�v3x]Ì D bits. Jacobsand van Emde
Boas [16] gave a simpler solution requiring jq?Qg¢u�v3x�uwv3x]g|c¹u�v3x]uwv3x�Ì D bits in the standard
unit costRAM modelaugmentedwith multiplicati vearithmetic. Jacobsand van EmdeBoas
result sufficesfor our purposes. The construction in [16] makes repeateduse of the data
structure in [12] where someprimes are assumedto be known. By replacing the applica-
tions of the data structuresfr om [12] with applications of the data structure fr om [10], the
randomizedconstruction time in Theorem 2 follows immediately.

Theorem 2 (Jacobsand van EmdeBoas[16]) There is an ?QÌ�/Og¨/Ujq?QgmD�D -family of perfecthash
functions Ò such that anyhashfunction ÊJF�Ò canberepresentedin Õq?�?Qg¢uwv=x�uwv3x�grD���>×D words
and evaluatedin constanttime for Ì _¦6 8 . The perfect hash function can be constructedin
expectedtime jq?QgmD .

A sparsearray Ø can be implementedusing a perfect hash function as follows. Assume
Ø has size Ì and contains g initialized entries eachstoring C bits of information. Using a
perfect hashfunction Ê for the g initialized indicesof Ø , wecanstore the g initialized entries
of Ø in an array Ù of size g , suchthat ØºKÍªANm*¸ÙÎK¡Ê�?Qª¬DbN for eachinitialized entry ØZKMªQN . If ØºKÍªAN is
not initialized, ÙÎK¡Ê�?Qª¬DbN is an arbitrary of the g initialized entries (dependingon the choiceof
Ê ). From Theorem 2 we immediately have the following corollary.

Corollary 1 A sparsearray of size Ì with g initialized entrieseach containing C bits of infor-
mationcanwith expectedpreprocessingtime jq?QgmD bestoredusingspacejq?Qgk 2C���>×D words,and
lookupsare supportedin constanttime, if uwv3x]uwv=x�gW_�C×_;> and ÌÔ_`6 8 .

For the approximate range counting data structure in Section5 we needthe following
result achieved by Fredman and Willard for storing small sets(in [14] denoted Q-heaps;
theseare actually dynamic data structures,but we only needtheir static properties). For a
set ( and an element ¶ wedefine ÚO���nÛ0Ü0?l¶�D]*p\¡,d¼{F|(`\d¼{_Ý¶m<B\ .
Theorem 3 (Fredmanand Willard [14]) Let ( bea setof > bit wordsand an integer g , where
\M(G\Þ_	?luwv3x]gmD �Aß�à and uwv3x]g|_;> . Using time jq?U\M(G\ÍD andspacejq?U\M(G\ÍD words,a datastructurecan
beconstructedthat supportsÚ��=�nÛ"ÜB?l¶�D queriesin constanttime, given the availability of a table
requiring spaceandpreprocessingtime jq?QgmD .

The result of Theorem 3 can be extendedto setsof size ?Quwv=x�gmD�á for any constant âao±. ,
by constructing a ?Qu�v3x]gmD7�Aß�à -ary search tr eeof height ã3â with the elementsof ( stored at the
leavestogether with their rank in ( , and where internal nodesare representedby the data
structuresof Theorem 3. Top-down searchesthen take time proportional to the height of the
tr ee.

Corollary 2 Let â�oÉ. be fixed constantand ( a setof > bit words and an integer g , where
\M(G\^_ ?luwv3x]grD á and uwv3x]gÓ_i> . Using time jq?U\M(G\ÍD and spacejk?7\M(G\MD words, a data structure
can beconstructedthat supportspredecessorqueriesin constanttime, given the availability of
a tablerequiring spaceandpreprocessingtime jq?QgrD .
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Figure1: Thebinarytree æ for thecaseç =4, èJé;ê�ë=ì�í=ì�î�ìUïUð=ìUïOñ3ò , and ópéôð . Theset è inducesthesetsõ éôê�ï2ì�ð=ì�ë=ì�ñ�ì�ö=ì�î�ì�÷=ì�ïeïeìUïOñÞìUï�ö�ò and øÝéôê�ï2ì�ð=ì�î�ìUïeï5ò , andthetwo sparsearraysù and ú .

3 Rangereporting data structur e

In this sectionwe describe a data structure supporting FindAny ?A@B/7C�D queries in constant
time. The basiccomponentof the data structure is (the implicitly representationof) a perfect
binary tr ee û with 6 8 leaves,i.e. a binary tr eewhere all leaveshave depth > , if the root has
depth zero. The leavesare numbered fr om left-to-right K¡6 8 N , and the internal nodesof û are
numbered 1=/242424r/�g�9+1 . The root is the first node and the childr en of node ü are nodes 6�ü
and 6�ükcý1 , i.e. lik e the numbering of nodesin an implicit binary heap [11, 25]. Figure 1
showsthe numbering of the nodesfor the case>`*�ã . The tr ee û hasthe following properties
(see[15]):

Fact 1 The depthof an internal node ü is ��Å�Æ�?Qü"D , and the £=þ�ÿ ancestorof ü is üJ¾|£ , for .H_
£H_ýÂ��5®0¯ � ?Qü"D . The parentof leaf @ is the internal node 6 8 �B�¨c¸?Q@ ¾H1dD , for .�_Ó@�� 6 8 . For
.H_Ç@��pC��Ä6�8 , the nearestcommonancestorof the leaves @ and C is the 1Gc;�kÅ�Æ�?Q@Z½¹C�D þ�ÿ
ancestorof the leaves @ and C .

For a node ü in û , we let � �
	��5?Qü"D and 
���������?lü0D denotethe left and right childr enof ü , and we
let û�� denotethe subtreerootedat ü and (�� denotethe subsetof ( where ¶WFH(�� if , and only
if , ¶�F�( , and leaf ¶ is a descendentof ü . We let � be the subtreeof û consistingof the union
of the internal nodeson the paths fr om the root to the leavesin ( , and we let � be the subset
of � consistingof the root of û and the nodeswhereboth childr enare in � . Wedenote � the
setof branching nodes.Sinceeachleaf-to-root path in û contains > internal nodes,we have
\��:\�_-g· �> , and since � contains the root and the setof nodesof degreetwo in the subtree
definedby � , wehave \�� \�*`g°9a1 , if both childr enof the root are in � and otherwise \��a\�*`g .

To answera query FindAny ?A@B/7C�D , the basic idea is to compute the nearest common an-
cestor ü of the nodes @ and C in constant time. If (ÝI¹KM@R/OC7NHÈ* � , then either �{�d�^(�� ��� � � � �
or �k�w�}(�!#" $&%'� � � � is contained in Kf@B/7CON , since Kf@B/7CON is contained within the interval spannedby
ü , and @ and C are spannedby the left and right child of ü respectively. Otherwise what-
ever computation we do cannot identify an integer in (~I;KM@R/OC7N . At most g�> nodessatisfy
(��¿È*(� . E.g. to compute FindAny ?')"/21�*�D , we have üÝ*+* , �{�d� (�� �,�-� � � � * ����� (/.J*#P , and
�k�w�^(�!#" $&%'� � � � *É�����^(10q*i1d6 . By storing thesenodesin a sparsearray together with �k�w�^(��
and �����}(�� , we obtain a data structure using spacejq?lg�>¢D words, which supports FindAny
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Proc Report 243"ì65879 é FindAny 243"ì65:7
if 9<;é>= then

Report 243"ì 9@? ï
7
output2 9 7
Report 2 9BA ï2ì6587

Proc FindAny 243"ì6587
if 3@CD5 then
ó éÝïFE@24GIHKJL2wçM71N�ï
7O é�GPHKJ/243MQR5:7S éT2K2¬ïUEV2wç ? ï
7K7 A 243WNµï
7K7/N O
X é S NY2K2wç ? ï ? O 7WZ[2�ó ? ï
7K7\ éSù^] X`_�a øI] S Ncbd] Se_f_hg øI] X Ncbd] X`_i_
for 9kj ê \ml�npo:qsrtl�u ì \ml�nio:qvrtl-w ì \xl�y6zp{}|~r:l�u ì \ml�y6zp{}|~rtl-w ò

if 9kj ] 3"ì65 _ then return 9
return =

Figure2: Implementationof thequeriesReport andFindAny.

in constanttime. In the following wedescribehow to reducethe spaceusageof this approach
to jq?lgmD words.

Weconsiderthe tr ee û aspartitioned into a setof layerseachconsistingof � consecutive
levelsof û , where � *ý1^Àa?Q�kÅ�Æm?Q>¢D¨¾{1dD , i.e. � *+6L�K��e���K� 8m� , or equivalently � is the power of
two, where �� s >���� _ s > . For a node h , we let �Ö?Qh�D denotethe nearest ancestor � of h ,
suchthat Â��5®"¯ � ?'�3D��kvzÂk�Á*ý. . If Â���®0¯ � ?lh�D �kvzÂk�Á*ý. , then �Ö?Qh�D}*-h . Since � is a power
of 6 , we can compute ¶Î�kv"Â�� as ¶��Ç?'� 9�1dD , i.e. for an internal node h , we can compute
�Ö?lh�D * h·¾H?QÂ���®0¯ � ?lh�DI�Ó?��É9Ý1dD�D . E.g. in Figure 1, � *Ó6 and �]?'��D°*���¾H?'*<�Ó?�6×9;1dD�D°*
�×¾Î1°*�ã .

The data structure for the set ( consistsof threesparsearrays Ù , � , and � , eachbeing
implementedaccording to Corollary 1. The arrays Ù and � will be usedto find the nearest
ancestorof a nodein � that is a branching node.

Ù±Ë A bit-vector that for eachnode � in � with �Ö?���DE*�� (or equivalently Â��5®"¯ � ?'�3D��kvzÂk� *
. ), has ÙÎK-��N�*¸1 if , and only if , there existsa node h in � with �Ö?lh�D�*�� .

�´Ë A vector that for eachnode h in � where �Ö?lh�D�*`h or Ù:K �Ö?lh�D�N�*	1 storesthe distanceto
the nearestancestor ü in � of h , i.e. ��KÍhBN�*`Â���®0¯ � ?lü"D 9SÂ��5®"¯ � ?Qh�D .

� Ë A vector that for eachbranching node ü in � storesa record with the fields: left, right,
Ì and � , where �ÎKÍü�N�4fÌ * �k�w�^(�� and �ÎKÍüÞNA4#� *´�{���}(�� and left (and right respec-
tively) is a pointer to the record of the nearest descendenth in � of ü in the left (and
right respectively) subtree of ü . If no such h exists, then �{KÍü�N�4 left * ü (respectively
�ÎKMü�NA4 right *`ü ).

GiventheabovedatastructureFindAny ?Q@R/OC�D canbeimplementedby thecodein Figure2.
If @�o C , the query immediately returns P . Otherwise the value � is computed, and the
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nearest common internal ancestor h in û of the leaves @ and C is computed together with
�ô*��Ö?Qh�D . Using Ù , � , and � we then compute the nearest common ancestor branching
node ü in � of the leaves @ and C . In the computation of ü an error may be intr oduced,since
the arrays Ù , � and � are only well definedfor a subsetof the nodesof û . However, aswe
show next, this only happenswhen (WI¿KM@R/OC7N *�� . Finally we check if one of the Ì and �
valuesof üR4fus���»¯ and üR4¡Ú��wx � ¯ is in Kf@B/7CON . If oneof the four valuesbelongsto Kf@B/7CON , wereturn such
a value. Otherwise P is returned.

As an exampledconsider the query FindAny ?�)0/21�*�D for the set in Figure 1. Here £�*Ä6 ,
h|*¦?�) c©ãÞD ¾�*�*�* , �{*�*q¾�?�?�*#9©6=DI�ý1eD°*�*º¾�1µ*Ä1 . Since Ù:K 15N *Ä1 , we have ��KÍhBN¨*Ä1 ,
and üJ*��{KÍh|¾��·KMhBN�N�*��ÎK�*�¾|15N�*���K 1�N . The four valuestestedare the Ì and � valuesof
�ÎKf6�N and �{K-��N , i.e. ,�*0/t�z/21d6"/215ã0< , and wereturn 12.

Theorem 4 The data structuresupportsFindAny in constanttime and Report in time jq?�[0D ,
where [ is the numberof elementsreported.Thedatastructurerequiresspacejk?7\M(G\MD words.

Proof. The correctnessof FindAny ?A@B/7C�D can be seenas follows: If (WIôKM@B/7CONE* � , then the
algorithm returns P , sincebefore returning an elementthere is a checkto find if the element
is containedin the interval Kf@B/7CON . Otherwise (�ILKf@B/7CONÖÈ*¡� .

If @;* CSFp( , then by Fact 1 the computed h¸* 6�8 �B� c	@ô¾�1 is the parent of @ and
�¹* h-¾±?�?l>Ý9;1dDP�±?'�¦9;1dD�D|* hý¾p?lÂ��5®0¯ � ?Qh�D �kv"Â���D|* �]?Qh�D . We now argue that ü
is the nearest ancestor node of the leaf @ that is a branching node. If (�¢ � � � * ,�@n< , then
û ¢ � � � IR�ý*£� and Ù:K �Ö?Qh�DbNr*+. , and ü is computedas �ÎK �Ö?Qh�D�¾���K �Ö?Qh�DbN�N , which by definition
of � is the nearestancestorof �Ö?Qh�D that is a branching node.Otherwise \M( ¢ � � � \ÞY`6 , implying
ûL¢ � � � I�� È* � and ÙÎK��Ö?lh�DbNÖ*´1 . By definition �·KMhBN is then definedsuch that �ÎKMhW¾¤�·KMhBN N is
the nearest ancestorof h that is a branching node. We concludethat the computed ü is the
nearest ancestorof the leaf @ that is a branching node. If the leaf @ is contained in the left
subtreeof ü , then üR4¡uv���»¯ *¹ü and üR4¡Ì *+@ . It follows that üR4fus�
�»¯54fÌ *+@ . Similarly , if the leaf @
is containedin the right subtreeof ü , then üy4fÚ���x � ¯54#� *�@ .

For the casewhere (�ILKf@B/7CON^È*£� and @���C , we have by Fact 1 that the computednode h
is the nearest common ancestorof the leaves @ and C , where Â��5®"¯ � ?Qh�Dº*´>+9ý?Q£Zc-1eD , and
that �S* h¿¾�?�?Q>Ý9;1^9~£zDI�Ó?'�¦9;1dD�Dk* h¿¾�?lÂ��5®0¯ � ?Qh�D �kv"Âh��Dq*¥�]?Qh�D . Similarly to the
case@a* C , we have that the computednode ü is the nearestancestorof the node h that is a
branching node. If ü�*Äh , i.e. ü is the nearest common ancestorof the leaves @ and C , then
(�� �,�-� � � � ILKf@B/7CONÖÈ*¡� or (�!#" $&%'� � � � IHKf@B/7CONÖÈ*¡� . If \M(�� �,�-� � � � \zY`6 and (�� �,�-� � � � IHKf@B/7CONÖÈ*¡� , then üy4fus�
�»¯³È*`ü
and üR4¡uv���»¯�4¦� F Kf@B/7CON . If \Í( � ���-� � � � \3*¸1 and ( � ���-� � � � I�Kf@B/7CONEÈ*�� , then üR4fus���»¯E*`ü and üR4fus���»¯�4fÌÔF©KM@R/OC7N .
Similarly if ( !#" $&%'� � � � I¿Kf@B/7CONµÈ*§� , then either üy4fÚ���x � ¯54fÌ FýKf@B/7CON or üR4¡Ú��wx � ¯�4¦� F-KM@B/7CON . Finally
we consider the casewhere üÉÈ* h , i.e. either h¦F¦û1� �,�-� � � � or hÉF¦û1!#" $&%'� � � � . If hÇF¦û�� ��� � � � �
and \M(�� ��� � � � � \E* 1 , then üR4fus���»¯a*Áü and (�� ���-� � � � * ,düR4fÌ·<~* ,düy4fus�
�»¯54fÌ·<ÝÑ Kf@B/7CON . Similarly if
hWFHû !#" $&%'� � � � and \M( ! " $&%'� � � � \z*±1 , then üR4fÚ��wx � ¯}*	ü and ( !#" $&%'� � � � * ,düR4¦�	<Z* ,düy4fÚ���x

� ¯54#�	<�Ñ±KM@R/OC7N .
If h�FJû � ��� � � � � and \M( � �,�-� � � � \ÞY`6 , then ûL�t¨ ��©�ª þ is either a subtreeof û � �,�-� � � � or û !#" $&%'� � � � , implying that
üR4¡uv���»¯�4¦� F	Kf@B/7CON or üy4fus�
�»¯54fÌ F	KM@B/7CON respectively. Similarly if hÝFÝû1!#" $&%'� � � � and \Í(�!#" $&%«� � � � \tYÄ6 ,
then either üy4fÚ���x � ¯54#� F~Kf@B/7CON or üR4¡Ú��wx � ¯�4¡Ì F Kf@B/7CON .

Weconcludethat if (�ILKM@B/7CONEÈ*�� , then FindAny returns an elementin (�ISKM@B/7CON .
The fact that FindAny takesconstanttime followsfr om Theorem1 and Corollary 1, since

only a constantnumber of booleanoperationsand arithmetic operations is performed plus
two calls to ��Å�Æ and threesparsearray lookups. The correctnessof Report and the jq?�[0D
time bound follows fr om Lemma 1.
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The spacerequiredby the data structuredependson the sizerequiredfor the threesparse
arrays Ù , � , and � . The number of internal levelsof û with Â��5®"¯ � �kvzÂk� *¦. is ¬»>¢�­��® ,
and therefore the number of initialized entriesin Ù is at most gc¬�>¢�­��®¢*¹jq?lg s >GD . Similarly ,
the number of initialized entries in � due to �]?Qh�D�*`h is at most gc¬�>¢�­��® . For the number of
initialized entries in � due to Ù:K �Ö?Qh�D�N�*-1 , weobserve that the subtree ¯�° of height � rooted
at �J*��]?Qh�D by definition containsat leastonenode fr om � . If \ ¯�°ÖI±�a\�*�² , then ¯³° hasat
most ²^c¹1 leaveswhich are nodesin � , and we have \ ¯³°ÖI´�a\�_¦?'²°c¹1dD6� _ 6­��[ . Since ¯�°
contributesto Ù with at most 6~�ô\ ¯�°�I<� \ entriesand \��:\"_�g , the total number of initialized
entries contributed to Ù due to Ù:K �Ö?Qh�D�N�*É1 is boundedby 6­��g . The number of initialized
entries in Ù is therefore bounded by 6­��gac�gc¬»>×�­��® *Éjq?lg s >GD . Finally, by definition, �
containsat most g initialized entries.

Each entry of Ù , � , and � requiresspace: 1 , ¬»uwv=xÖ>W® , and jq?Q>×D bits respectively, and Ù ,
� , and � have µÎ?lg s >×D , µÎ?lg s >GD , and at most g initialized entries respectively. The total
number of words for storing the threesparsearrays by Corollary 1 is therefore jq?�?Quwv=x�>+ 
g s >ôcô>; dgmD���>¢DÖ*	jq?lgmD words. It follows that the total spacerequired for storing the data
structure is jk?lgmD words. ¶

4 Construction

In this section we describe how to construct the data structure of the previous section in
expectedtime jq?Qg s >GD .
Theorem 5 Given an unorderedsetof g distinct integerseach of > bits, the range reporting
datastructurein Section3 canbeconstructedin expectedtime jq?lg s >×D .
Proof. Initially ( can be sorted in space jk?lgmD with the algorithm of Thorup [23] in time
jq?Qg�?Quwv=xÖu�v3x�gmD � D|* jk?lg s >×D or with the randomized algorithm of Andersson et al. [5] in
expectedtime jq?Qg¢u�v3x�uwv3x]grDÖ*+jq?lg s >GD . Therefore without lossof generality wecan assume
(L*¸,�@ � /242424m/7@ � < where @3«·�Ý@3« ��� for 1³_;ª¸�¿g .

We observe that ü|F¹� if , and only if , ü is the root or ü , is the nearestcommonancestor
of @�« and @3« ��� for some ª , where 1Î_-ªB�-g . Similarly as for the FindAny query, we can by
Fact 1 find the nearestcommonancestor ü�«VFº� induced by @3« and @3« ��� in constant time by
the expression

üd«r*-?�?b1^À:?Q>Ý9;1eD�Dmc�?Q@3«y¾�1dD�D�¾��kÅ�Æ�?Q@�«0½¿@3« ��� DV4
The nodes üýF¥� form by the pointers üR4¡uv���»¯ and üR4¡Ú��wx � ¯ a binary tr ee û/» . The defined
sequenceü � /242454r/Oü � �B� forms an inorder traversal of û1» . Furthermor e the nodessatisfy heap
order with respectto their depthsin û . Recall that Â��5®"¯ � ?Qüd«lDE*¹��Å�Æ�?Qüd«lD can be computedin
constanttime.

The inorder together with the heap order on the depth of the ü�« nodesuniquely defines
û/» since theseare exactly the constraints determining the shapeof the treaps intr oduced
by Seideland Aragon [22]. By applying an jq?QgrD time tr eap construction algorithm [22] to
ü � /Oü � /242424r/�ü � �B� weget the required left and right pointers for � . The Ì and � fields for the
nodesin � canbe constructedin a bottom-up traversalof û/» in time jq?lgmD .
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The information to be stored in the arrays Ù and � can by another traversal of û/» be
constructed in time linear in the number of nodesto be initialized. Consider an edge ?lht/�ü0D
in û/» , where ü is the parent of h in û1» , i.e. ü is the nearest ancestor node of h in û that
is a branching node or ü is the root. Let h;* hL¼5/Oh � /242454m/Oh ¤ * ü be the nodeson the path
fr om h to ü in û suchthat Â���®0¯ � ?lhB«lD�9 Â��5®0¯ � ?QhB« ��� DE*±1 . While processingthe edge ?Qh�/Oü"D we
will computethe information to be stored in the sparsearrays for the nodesh½¼2/Oh � /245424r/Oh ¤O�B� ,
i.e. the nodeson the path fr om h to ü exclusive ü . From the defintion of Ù and � we get the
following: For the array Ù westore Ù:K �Ö?Qh�DbNR*-1 , if Â��5®"¯ � ?,�]?Qh�D�DEo¿Â��5®0¯ � ?Qü ), and Ù:KÍhB«wNy*�. for
all ª¨*`.0/242424m/O£ 9W1 , where Â��5®"¯ � ?QhB«»D¾�ÝÂ��5®"¯ � ?,�]?Qh�D�D and Â��5®0¯ � ?QhB«�D��kvzÂk� *`. . For the array
� westore ��KÍhB«wN�*�Â��5®0¯ � ?Qü"D�9�Â���®0¯ � ?lhR«»D for all ª¨*�.0/542424r/7£ 9~1 where Â��5®"¯ � ?QhB«�D���vzÂh�Ô*`.
or Â���®0¯ � ?lhR«»Dh����¬»Â��5®"¯ � ?lü0D��­��® or Â���®0¯ � ?lhB«»DºYÄÂ��5®0¯ � ?,�Ö?lh�D�D . Finally, we store for the root
Ù:K 15N�*	1 and �·K 15NR*�. .

Constructing the threesparsearrays, after having identified the jq?Qg s >×D entries to be
initialized, by Corollary 1 takesexpectedtime jk?lg s >¢D . ¶

5 Approximate range counting

In this section we provide a data structure for approximate range counting. Let (iÑ )
denotethe input set,and let g denotethe sizeof ( . The data structure usesspacejq?lgmD words
suchthat wecan support Count T in constanttime, for any constant XZo;. .

Weassume( hasbeenpreprocessedsuchthat in constanttime wecancomputeFindAny ?A@B/7C�D
for all @B/7CGFH) . Next wehaveasparsearray suchthat wefor eachelement¶·F|( cancompute
ÚO���nÛm¿�?»¶�D in constanttime. Both thesedata structuresuse jk?lgmD space.

Definecount?A@B/7C�DV*Ä\Í(�I~KM@B/7CON�\ . We needto build a data structure which for any @R/OC×F~)
computesan integer [ suchthat count?A@B/7C�D _`[Î_-?�1Öc X=D count?A@B/7C�D .

In the following we will usethe observation that for @B/7C³F~( , @a_¸C , it is easyto compute
the exact value of count?Q@B/7C�D . This value can be expressedas ÚO�=�0Û�¿R?QC�D 9;Ú��=�nÛm¿y?A@zD�c	1 and
thus the computation amountsto two lookups in the sparsearray storing the ranks.

We reducethe task of computing Count T2?A@B/7C�D to the casewhere either @ or C are in ( .
First, it is easyto checkif (�ISKf@B/7CON is empty, i.e.,FindAny ?Q@B/7C�D returns P , in which casewe
simply return 0 for the query. Hence,assume(ÎI�KM@B/7CON is non-emptyand let â beany element
in this set.Then for any integers [ÁÀ and [ÃÂ suchthat count?A@B/7â�DV_`[ÃÀ×_	?�1�c X=D count?Q@R/Oâ5D and
count?Qâ�/OC�D _`[ÃÂ]_-?�1�c�X=D count?Aâd/7C�D , it holds that count?Q@B/7C�DÖ* count?Q@R/Oâ5D"c count?Aâd/7C�Dy9W1�_
[ÃÀ}c�[ÁÂ]9¹1�_ ?b1GcÝX=D count?A@B/7C�D�4 Hence,we can return Count T2?Q@B/7â5DV9 Count T2?Aâd/7C�DV9¹1 as
the answer for Count T2?A@B/7C�D , where â·F¹(SI;KM@R/OC7N is an integer returned by FindAny ?Q@B/7C�D .
Clearly, both calls to Count T satisfy that oneof the endpoints is in ( , i.e., the integer â . In
the following we can thus without lossof generality limit ourselves to the casefor a query
Count T5?Q@R/OC�D with @{F|( (the other caseC°F|( is tr eatedsymmetrically).

We start by describing the additional data structuresneeded,and then how to compute
the approximate range counting query using these. Define Ä±* ¬»u�v3x]g�® , and ÅÉ* ,t¶ÉF
(·\ ?QÚ��=�nÛm¿y?l¶�D09·1eD]�kv"ÂBÄÎ*�. <1Æ³�����^( . Weconstruct the following additional data structures
(seeFigure 3).

JumpR Ë For eachelement Ç{F�Å we store the setJumpR?vÇzD]*	,d¼:F|(|\ count?vÇ3/�¼nD]*¹6 « � ªEF
Kf.0/'ÄnN3< .
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JnodeR Ë For eachelement ²ºFL( we store the integer JnodeR?'²�D being the successorof ² in
Å .

LN Ë For eachelement Ç�F±Å westore the setLN ?fÇzD�*	,dª�FW(�\�Çµ* JnodeR?Qª¬DU< .

1 2 20 30 40 6027 47 61 6250 630 103 34

1 1010101010 27272727 27 3434343434 4747474747 61616161 6261

ÈiÉvÊ
ËsÌ6Í �fÎ,Ï

ÐsÑ8Í �fÎ,Ï
Figure3: Extensionof the datastructureto supportCount T queries. çÄé�Ò , ÓÝéÕÔÍè¸Ô¨éÄðdî , and Ö©é× npØ�{ ÓÚÙEé~ö .

Each of the setsJumpR and LN have sizebounded by Ä�_Çuwv3x×\f)�\ , and henceusing theÛ
-heapsfr om Corollary 2, wecancomputepredecessorsfor thesesmall setsin constanttime.

These
Û

-heapshave spacecost linear in the setsizes.Sincethe total number of elementsin
the structures JumpR and LN is jq?7\M(G\MD , the total spacecost for thesestructures is jk?7\M(G\MD .
Furthermor e, for the elementsin ( given in sortedorder, the total construction of thesedata
structuresis also jk?7\M(G\MD .

To determine Count T5?Q@R/OC�D , where @LF;( , we iterate the following computation until the
desired precisionof the answeris obtained.

Let Ç¹* JnodeR?A@zD . If Ç	o C , return ¥ c count?Q@B/ Pred Ü­Ý � Þ�� ?AC�D�D . Otherwise, ÇýY C ,
and we increase[ by count?Q@B/KÇzDV9	1 . Let ¼~* PredJumpR� Þ�� ?AC�D and ª#*´ÚO�=�0Û JumpR� Þ�� ?Q¼0DV9+1 .
Now count?vÇ3/O¼0Dµ*´6 « _ count?fÇ3/7C�Dk�Ä6 « ��� . We increase[ by 6 « . Now [~* count?A@B/O¼0D and
count?l¼�/OC�DW�¹6 « . If ¼:*¸C we return [ . If ?�[³c;6 « D��3[ß�	1 c¿² , we are alsosatisfiedand return
[#c¿6 « . Otherwisewe iterate oncemore,now to determine Count T5?l¼�/7C�D .
Theorem 6 The datastructureusesspacejq?U\M(G\ÍD wordsand supportsCount T in constanttime
for anyconstantXµo;. .
Proof. From the observations above we conclude that the structure usesspace jq?QgrD and
expectedpreprocessingtime jq?QgrD . Eachiteration takesconstanttime, and next weshow that
the number of iterations is at most àµ_i1×c§¬»uwv3xB?�1d��X=DK® . Let [ô* 6~á}cãâ , â£�¦6~á , after the
first iteration. In the à th iteration we either return count?Q@R/OC�D or [�cÝ6 « o count?Q@B/7C�D , where
ª _ãäµ9ºànc�1 . In the latter casewe have [<� count?Q@R/OC�D>�¹[³c;6~áO�må �B� . We needto show that
[Zc;6 « _Ä?�1 côX=D count?Q@B/7C�D . Since [D� count?A@B/7C�D , we can write [Zc;6 « �p?�1 côX=D�[ . We have
6 « �;[ÞX . Since ª�_[äµ9æàBc�1 and [:Y`6~á�cºâ , wehave 6~áO�må �B�ç��6�á�X and the result follows. ¶

References

[1] P. K. Agarwal. Rangesearching. In Handbookof DiscreteandComputationalGeometry,
CRCPress. 1997.

10



[2] A. Aggarwal and J. S.Vitter. The input/output complexity of sorting and relatedprob-
lems. Communicationsof theACM, 31(9):1116–1127,September1988.

[3] M. Ajtai. A lower bound for finding predecessorsin Yao’s cell probemodel. Combina-
torica, 1988.

[4] A. Amir , A. Efrat, P. Indyk, and H. Samet. Efficient regular data structuresand algo-
rithms for locationandproximity problems.In FOCS:IEEE Symposiumon Foundations
of ComputerScience(FOCS), 1999.

[5] A. Andersson,T. Hagerup, S. Nilsson,and R. Raman. Sorting in linear time? Journal
of ComputerandSystemSciences, 57(1):74–93,1998.

[6] A. Andersson and O. Petersson. Approximate indexed lists. Journal of Algorithms,
29(2):256–276,November1998.

[7] A. Anderssonand M. Thorup. Tight(er) worst-caseboundson dynamic searching and
priority queues.In STOC: ACM Symposiumon Theoryof Computing(STOC), 2000.

[8] P. Beameand F. Fich. Optimal bounds for the predecessorproblem. In 31st ACM
Symposiumon Theoryof Computing(STOC), 1999.

[9] K. L. Clarkson. An algorithm for approximate closest-pointqueries. In Proceedingsof
the 10th Annual Symposiumon ComputationalGeometry, pages160–164,Stony Brook,
NY, USA, June1994.ACM Press.

[10] M. Dietzfelbinger. Universal hashing and k-wise independent random variables via
integer arithmetic without primes. In 13th Annual Symposiumon TheoreticalAspects
of ComputerScience, volume1046of LectureNotesin ComputerScience, pages569–580.
Springer Verlag, Berlin, 1996.

[11] R. W. Floyd. Algorithm 245: Treesort3.Communicationsof the ACM, 7(12):701,1964.
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