
Practical Reflection and Metaprogramming
for Dependent Types

David Raymond Christiansen

Advisor: Peter Sestoft
Submitted: November 2, 2015

i

Abstract

Embedded domain-specific languages are special-purpose pro-
gramming languages that are implemented within existing general-
purpose programming languages. Dependent type systems allow
strong invariants to be encoded in representations of domain-specific
languages, but it can also make it difficult to program in these em-
bedded languages. Interpreters and compilers must always take
these invariants into account at each stage, and authors of embedded
languages must work hard to relieve users of the burden of proving
these properties.

Idris is a dependently typed functional programming language
whose semantics are given by elaboration to a core dependent type
theory through a tactic language. This dissertation introduces elabo-
rator reflection, in which the core operators of the elaborator are real-
ized as a type of computations that are executed during the elab-
oration process of Idris itself, along with a rich API for reflection.
Elaborator reflection allows domain-specific languages to be imple-
mented using the same elaboration technology as Idris itself, and it
gives them additional means of interacting with native Idris code. It
also allows Idris to be used as its own metalanguage, making it into
a programmable programming language and allowing code re-use
across all three stages: elaboration, type checking, and execution.

Beyond elaborator reflection, other forms of compile-time reflec-
tion have proven useful for embedded languages. This dissertation
also describes error reflection, in which Idris code can rewrite DSL er-
ror messages before presenting domain-specific messages to users,
as well as a means for integrating quasiquotation into a tactic-based
elaborator so that high-level syntax can be used for low-level reflected
terms.

ii

Resumé

Indlejrede domænespecifikke sprog er skræddersyede program-
meringssprog, som er implementeret inde i eksisterende alment an-
vendelige programmeringssprog. Afhængige typer tillader, at stærke
invarianter indkodes i datarepræsentationer, herunder repræsenta-
tioner af programmeringssprog. Dog kan denne kontrol også be-
sværliggøre programmeringsprocessen, da brugeren altid skal de-
monstrere, at invarianterne er overholdt. Fortolkere og oversættere
skal tage disse invarianter i betragtning i hvert trin. Når indlejrede
sprog bliver designet, skal der arbejdes hårdt for at brugerne ikke
bebyrdes med tungt bevisarbejde.

Idris er et funktionsprogrammeringssprog med afhængige ty-
per, hvis semantik er givet ved elaborering til en afhængigt-typet
kerneteori ved brug af et taktiksprog. Denne afhandling introdu-
cerer elaboratorrefleksion, hvor elaboratorens grundlæggende opera-
tioner er realiseret som en type, hvis bereginger bliver afviklet un-
der Idris’s egen elaborering. Dertil findes et rigt API for refleksion
om termer, datatyper, og andre definitioner. De reflekterede elabore-
ringsoperationer muliggør, at domænespecifikke sprog kan imple-
menteres med Idris’s elaboreringsteknologi, og således får de elabo-
rerede sprog flere muligheder for interaktion med Idris. Desuden
bliver Idris anvendelig som sit eget metasprog, hvilket gør Idris til
et programmerbart programmeringssprog og muliggør genbrug af
kode i alle tre stadier: elaborering, typetjek og afvikling.

Udover elaboreringsrefleksion har andre former for statisk re-
fleksion vist sig at være nyttige for indlejring af sprog. Denne af-
handling præsenterer desuden refleksion af fejlmeddelelser, hvor kode
skrevet i Idris kan omskrive fejlmeddelelser med oprindelse i do-
mænespecifikke sprog til domænespecifikke fejlmeddelelser. Deru-
dover præsenteres en teknik for integrering af kvasicitering i en tak-
tikbaseret elaborator, så højtniveausyntaks kan anvendes for termer
i kernesproget.

Acknowledgments

This dissertation represents the culmination of a long process of learn-
ing and hard work that was made possible largely by the generosity and
caring of other people.

I would like to thank my supervisor, Peter Sestoft, for being a won-
derful example of how to communicate clearly and how to let theory and
practice inform one another. Even when my work diverged somewhat
from our original plans, he has been supportive and helpful, always ready
to discuss what I’ve been working on.

Our partners at Edlund A/S, especially Henning Niss and Klaus Grue,
got me off to a good start and kept me on the right track. Their feedback
and good example was immensely valuable.

I would also like to thank Edwin Brady for being so helpful as I’ve
extended and modified his language, and the #idris channel on Freenode
for being such a great community.

I would especially like to thank my fellow Ph.D. students Hannes Meh-
nert and Ahmad Salim Al-Sibahi. Hannes’s hacker spirit was always an
inspiration, and we had many good discussions about both programming
languages and wider themes. Ahmad’s encyclopedic knowledge helped
me find many papers that I didn’t even know existed, and his feedback
on an earlier draft of this dissertation made it much better.

If not for the Danish welfare society, I may have never had the chance
to go to graduate school. The Danish public sector paid my tuition and
stipend while I was working towards my master’s degree, and my work
was funded as part of the Actulus project, Danish National Advanced
Technology Foundation (Højteknologifonden) grant 017-2010-3. Højteknologi-
fonden has since become part of Innovationsfonden. Tusind tak!

And thanks, Lisbet, for support both moral and material, and for your
patience during the last few months.

Contents

Acknowledgments iii

Contents v

1 Introduction 1

I Background 7

2 Embedding Languages 9
2.1 Embeddings, Deep and Shallow . 9
2.2 Representing Binders . 10
2.3 Syntactic Re-Use . 11
2.4 Elaborating Embedded Languages 12

3 Reflection and Metaprogramming 15
3.1 Quasiquotations in Programming Languages 15
3.2 Static Reflection . 17
3.3 Reflection and Dependent Types . 18

4 The Idris Elaborator 21
4.1 The Core Language . 23
4.2 Pattern-Matching Definitions and Data Types 24
4.3 The Development Calculus . 25
4.4 Elaboration Example . 26
4.5 Binders in the Elaborator . 34

5 Reflection in Idris 37

vi Contents

II Metaprogramming Idris 45

6 A Pretty Printer that Says What it Means 49
6.1 Presentations . 50
6.2 The Idris IDE Protocol . 56
6.3 Annotated Pretty Printing . 57
6.4 Conclusions . 60

7 Quasiquotation 61
7.1 Example . 62
7.2 Idris Quasiquotations . 64
7.3 Elaborating Quasiquotations . 65
7.4 Polymorphic Quotations . 72
7.5 Quoted Names . 73
7.6 Future Extensions . 74

8 Error Reflection 77
8.1 Introduction . 77
8.2 Error Reflection . 78
8.3 Applications . 85
8.4 Argument Error Handlers . 90
8.5 Implementation Considerations . 91
8.6 Related Work . 93
8.7 Conclusion and Future Work . 93

9 Elaborator Reflection 95
9.1 Introductory Examples . 96
9.2 Elaborator Reflection, Defined . 103
9.3 Implementation Considerations . 111
9.4 The Pruviloj Library . 113
9.5 Other Applications . 117
9.6 Agda-Style Reflection . 135
9.7 Reflections on Elaborator Reflection 140

10 Conclusions 147

Bibliography 149

A Elaborator Tactics 161

Contents vii

B The Idris Language 165

Glossary 171

Chapter 1

Introduction

Static type systems in programming languages are becoming more and
more expressive over time. As type systems get more and more expres-
sive, they offer greater abilities to express complex invariants, ruling out
more classes of bugs. Additionally, an expressive static type language can
enable better programming tools. If the system knows more about what
the programmer is trying to build, then it is in a better position to help
her get there!

As type systems become more and more expressive, the job of the pro-
grammer when writing a type begins to resemble the job of the program-
mer when writing a program. In other words, types begin to need to do
computation. Unfortunately for programmers, most type systems were not
designed as programming languages, and systems in which the ability to
write programs is accidental tend to not be very pleasant to write pro-
grams in.

Enter dependent types. Dependently typed languages use the same
language for type-level and program-level computation. Because this lan-
guage is designed explicitly for programming, type-level programming
is no longer a difficult subject reserved for the most advanced users. Ad-
ditionally, it becomes possible to re-use code in both stages: the same list
datatype that is used to contain run-time values from a database can be
used to represent a statically-checked typing context for an embedded
domain-specific language.

Martin-Löf’s type theory and its descendants have been recognized
as programming languages since the 1980s [Mar84]. However, early im-
plementations of type theory, including Coq [Coq04], Nuprl [Con+86],
LEGO [LP92], Alf [MN94], and the early versions of Agda, were typi-

2 Chapter 1. Introduction

cally designed as proof assistants, rather than as programming languages.
While it was possible to use extraction to recover computational content
from proofs, it was the proofs that were the star of the show: rather than
programming with dependent types, dependent types were used first
and foremost as a logic. This changed with Augustsson’s Cayenne [Aug98],
and then later Epigram [MM04], Agda 2 [Nor07], and their descendant
Idris [Bra13b]. These languages represent an alternative tradition, in which
type theory is intended to be used directly as a programming language.
This dissertation describes a series of techniques that are implemented as
part of Idris, and basic reading knowledge of Idris is necessary to under-
stand the code samples. Appendix B summarizes some of Idris’s features
that differ from Haskell or Agda.

In a dependently typed language, datatypes can be represented as
codes in universes [AM03], allowing generic programming internally in
the system. It is even possible to remove datatype definitions as a primi-
tive, representing new datatypes as codes in a self-representing universe
of definitions [Cha+10b], which allows generic programming over all da-
tatypes — a technique dubbed levitation. One might therefore think that
dependent types are powerful enough to subsume all other compile-time
programming.

However, systems for representing type theory inside of type theory
suffer from a number of shortcomings. Generic programming with uni-
verses relies on all datatypes being represented using the universe encod-
ing, and current implementations do not automatically encode datatypes
as codes in a universe. It is also unclear to what extent these very expres-
sive universe encodings can be used for practical programming, which
requires things like compilers that generate efficient code and error re-
ports that are given in terms of the code that the user wrote rather than
code that was generated behind the scenes. For example, Al-Sibahi imple-
mented levitation for Idris in his M.Sc. thesis [AlS14], and encountered
very poor performance. Furthermore, given the variety of universe en-
codings that exist, privileging one of them in the implementation will
probably not satisfy all the desired use cases.

Domain-specific languages, which are discussed as “little languages”
in a classic paper by Bentley [Ben86], are small programming languages
designed to solve one particular problem very well. These domain-specific
languages need not be suitable for general-purpose computing. In 1996,
Paul Hudak [Hud96] coined the term “domain-specific embedded lan-
guage” to refer to libraries or APIs in a general-purpose language that

3

somehow work more like a separate language. Since then, there has been
an explosion in the number of these embedded languages.

Embedded languages can be easier to develop than they would be as
stand-alone languages because they can re-use aspects of their host lan-
guage, such as development tools, parsers, compilers, and documentation
systems. Dependently typed languages are a particularly interesting host
for these languages: not only do dependent types allow the embedded
language to have a rich type system that is enforced by the type system of
the source language, they also provide a means to specify programs in a
form amenable to proof automation. Oury and Swierstra [OS08] describe
an embedding of part of Cryptol into Agda, a data description language,
and a database query language. The Bedrock project [Chl13] developed a
DSL embedded in Coq that supports verified development of low-level
code with an abstraction level that is similar to a macro assembler. In
Idris, Brady and Hammond [BH12] implemented a resource-safe impera-
tive language, and Brady later built an algebraic effects language [Bra13c]
where resource protocols can depend on the results of effectful opera-
tions [Bra14].

As the implementation of an embedded language increases in com-
plexity, the issues faced by the implementer begin to approach those faced
by the implementer of a stand-alone language. It becomes more and more
difficult to provide error messages that make sense in the context of the
embedded language, non-trivial type checking and elaboration may be
required, and it may not be easy to arrange for extrinsic proofs required
by the DSL’s internal representation to be constructed transparently.

Rather than using the richness of type theory as a very big hammer to
drive in a screw, this dissertation explores the application of more tradi-
tional forms of compile-time metaprogramming to a dependently typed
language. Some of the technology developed, such as error reflection, is
not specific to dependent types. On the other hand, the reflected elabora-
tor only makes sense in the context of a system that is implemented using
the same technique as Idris itself.

Some portions of this dissertation are based on previously published
papers. We indicate each of these in the text.

4 Chapter 1. Introduction

Summary of Contributions

This dissertation is divided into two parts. Part I describes the context
within which the work should be understood, and Part II describes the
specific new contributions of this dissertation. In particular,

• Chapter 6 presents a general means of extending commonly-used
pretty printing libraries with semantic information, which enables
features like interactive error messages;

• Chapter 7 presents a means of implementing quasiquotation in a
tactic-based elaborator, so that the results of elaboration are reified
as a datatype;

• Chapter 8 presents error reflection, a method for allowing users and
library authors to improve error messages;

• Chapter 9 describes elaborator reflection, in which Idris’s elaborator is
reified into Idris and made into a means of language extension; and

• Chapter 9 also contains a number of examples of elaborator reflec-
tion, demonstrating its utility.

All of these features have been incorporated into Idris itself. At the time
of writing, the source code to Idris is available from https://www.github.
com/idris-lang/Idris-dev.

Typographical and Spelling Conventions

This dissertation uses the following typefaces:

• Monospace text is used for code in Idris or any other language, as a
user might type it, where an anonymous function that adds one to
its argument is written \x => x + 1.

• Mathematical notation is used for internal representations of type
theory, where an anonymous function that adds one to its argument
is written 𝜆 x ∶ Nat . x+1.

• Identifiers are typically colored according to the standard Idris color
scheme, itself based on Conor McBride’s color scheme for Epigram.
Data constructors are red, type constructors are blue, user-defined

https://www.github.com/idris-lang/Idris-dev
https://www.github.com/idris-lang/Idris-dev

5

constants and operators are green, and bound variables are purple.
Implicitly bound variables are italic purple.

• Program text that has not yet been type checked, along with pro-
grams written in non-dependently-typed languages such as Hask-
ell, are written in black monospace text.

• Code samples that contain errors are written with a
::::
red

::::
wa

::
vy

:::::
un-

::::
der

::::
line.

• Lines of code that simulate an interactive session begin with a bold-
face >, and the response from the system is immediately beneath.

• Tactics in the idealized tactic metalanguage are written in small caps.

• Nonterminals in a grammar are written in black italic text, while con-
crete terminals are written either in monospace text when the gram-
mar represents a user-facing programming language or in mathe-
matical notation when the grammar represents an internal repre-
sentation of type theory.

Due to its origin at the University of St. Andrews, Idris libraries con-
ventionally use UK spellings of English words. In particular, the “-ise”
spelling is preferred over the “-ize” spelling. Thus, literal operator names
will sometimes occur with these spellings, even though the text is written
according to US spelling conventions.

Part I

Background

Chapter 2

Embedding Languages

The original motivation for the work presented in this dissertation was
to narrow the usability gap between embedded and stand-alone domain-
specific languages, as well as to provide tools to implement type checkers
more easily. Even though the tools that were developed have broader ap-
plicability, knowing their roots will help in understanding them.

Embedded languages are significantly easier to develop than stand-
alone languages. They can inherit from the substantial work that has been
put into the development tools and libraries that exist for their host lan-
guage.

However, embedded languages are also restricted by their host lan-
guage. Just as their syntax and tools can build upon those of the host, they
are also limited by them. Features that are fairly straightforward to add
to a stand-alone language implementation, such as reporting source code
locations in runtime error messages, can be difficult or impossible when
the language is embedded. Even worse, details about the host language
can “leak”, leading to inscrutable error messages.

This chapter contains an overview of commonly-used techniques for
embedding languages, with a special focus on their applicability to de-
pendently typed languages such as Idris.

2.1 Embeddings, Deep and Shallow

One of the first decisions that must be made in the course of embedding
a DSL in some other language is whether to implement a deep or shal-
low embedding, a distinction that goes back to Boulton et al. [Bou+92].

10 Chapter 2. Embedding Languages

While Boulton et al. were writing in the context of embedding hardware
description languages in proof assistants, the terminology has spread to
language embeddings that are performed in other contexts.

Shallow embeddings of DSLs directly use the features of the host lan-
guage where they coincide with the features of the embedded language.
For example, addition in an embedded language may be implemented di-
rectly as addition in the host language. One common advantage of shal-
low embeddings is a syntax for programs that is closer to that of the host
language’s syntax for programs. Additionally, because the embedded lan-
guage can be extended by defining new host-language programs, it can
be easier to extend than a deep embedding, which can require adding
new constructors to a datatype.

A deep embedding uses an ordinary datatype to represent the ab-
stract syntax of the embedded language. Because DSL programs are repre-
sented as explicit tree structures, it is straightforward to use them in mul-
tiple ways, such as interpretation and compilation. Additionally, gener-
alized algebraic datatypes (GADTs) or indexed families provide a means
of using the host language’s type system to implement the DSL’s type
system, either in part or in whole, which can reduce the burden of im-
plementing type inference or type checking for the embedded language.
Compared to shallow embeddings, deeply embedded languages often re-
quire more code to be written, and it is more difficult to extend them
because host language features cannot be re-used as readily.

It was previously believed that it was not possible to implement the
kinds of static type guarantees that are provided by using GADTs or in-
dexed families to represent terms in the embedded language. However,
techniques like Carette et al.’s final tagless encoding [CKS09] and Hofer et
al.’s related polymorphic embedding technique [Hof+08] provide a means
of encoding expressive embedded type systems while still enabling mul-
tiple interpretations of the same code.

2.2 Representing Binders

Many useful languages include some notion of variables and the scopes
within which they are bound. However, representing binding and substi-
tution is fundamentally difficult, both because binding trees are usually
considered according to their 𝛼-equivalence classes and because name
capture can cause difficult-to-diagnose bugs. Embedded languages, whe-

2.3. Syntactic Re-Use 11

ther they are deeply or shallowly embedded, have an additional challenge:
they must be readable and writable by their intended users, which rules
out approaches such as the direct use of de Bruijn indices [deB72].

Many embedded languages re-use the host language’s variable bind-
ing mechanisms, a technique referred to as higher-order abstract syntax,
or HOAS [PE88]. Not only does HOAS allow the embedded language to
“piggyback” on the host language’s implementation of substitution, it can
also provide a much nicer syntax for variables and binders. Unfortunately,
typical representations of HOAS lead to datatypes that are not strictly pos-
itive (that is, datatypes where a recursive reference to the type is to the
left of a function arrow in a constructor argument), rendering them un-
fit for use in dependently typed languages like Idris. Even worse, using
host-language lambda expressions for variable scopes can allow the repre-
sentation of exotic terms, which are term representations that do not corre-
spond to actual terms. For example, in a datatype that uses host language
functions to represent DSL variable bindings, it is possible to use a func-
tion that does a case analysis on its argument, instantiating completely
different terms. Some solutions to this problem exist, such as Chlipala’s
parametric HOAS [Chl08]. The field of tools and languages for reason-
ing about syntax trees with binders is vast, and giving a complete survey
here would detract from the presentation of the work on reflection and
metaprogramming.

Idris has a feature called DSL notation [BH12] that allows the direct
reification of Idris’s nominal syntax for bindings to datatypes that repre-
sent a form of de Bruijn indices. When using DSL notation, expressions
are provided that correspond to the zero and successor constructors of
the de Bruijn indices, and constructors are specified for each overloadable
binding form. By suitably indexing the term and variable index datatype
with contexts and type information, this approach can provide the syntac-
tic convenience of a HOAS encoding along with the semantic convenience
of de Bruijn indices.

2.3 Syntactic Re-Use

Because embedded languages derive much of their benefit from the abil-
ity to re-use aspects of their host language, techniques for embedding
should ideally allow as much of the host language’s syntax to be re-used
as possible. Indeed, this is one of the reasons why shallow embeddings

12 Chapter 2. Embedding Languages

are useful, absent a Lisp-style macro system.
Repurposing the host languages’ features is also useful in languages

without the full syntactic abstraction of the Lisp tradition. Rompf et al.
[Rom+13] describe the selective re-use of components of the host lan-
guage as language virtualization. Their paper contains a survey of language
mechanisms that allow virtualization, including C++’s expression tem-
plates, Haskell’s do-notation, and F#’s computation expressions [PS14].

An alternative version of the Scala compiler, which is called Scala-vir-
tualized [Rom+13], enables almost all of Scala’s syntax to be rewritten to
method calls. This makes it possible to repurpose features such as Scala’s
pattern matching and variable definition syntax. Scala-virtualized is used
to implement the Lightweight Modular Staging framework [RO12], which
is a reusable deep embedding of a core language that has been used to
implement a number of embedded languages. Svenningsson and Axels-
son [SA13] describe another approach to achieving a convenient syntax
for deeply embedded DSLs that does not require modifications to the
host language. They combine deep and shallow embeddings such that the
shallow embedding produces terms in a deeply embedded core language.
This approach has the extensibility and convenient syntax of shallow em-
beddings and the potential for code generation of deep embeddings.

Najd et al. [Naj+15] describe an alternative to language virtualization
that relies on quotation mechanisms to enable the re-use of host-language
syntax. Their methodology, referred to as Quoted Domain-Specific Lan-
guages (QDSL), consists of using typed quotations of the host language
together with a normalization procedure that allows Gentzen’s subfor-
mula property to be used to reason about the presence or absence of cer-
tain features in the embedded programs. Because of the use of quotation,
essentially arbitrary sections of the host language can be re-used by the
embedded language.

2.4 Elaborating Embedded Languages

Much of the work in this dissertation grew out of a project to define a
dependent type system for the modeling language for life insurance and
pension products [Chr13b; Chr+14] that was developed as part of the Ac-
tulus project. This type system was never completed. However, in the
course of this work, it became apparent that we needed a way to re-use
parts of the implementation of a language like Idris or Agda, and that ex-

2.4. Elaborating Embedded Languages 13

isting paradigms of language embedding would be insufficient. Work on
reflection proceeded originally from this intention.

Chapter 3

Reflection and Metaprogramming

In this dissertation, we use the term metaprogramming to refer to the de-
velopment of programs that generate or modify other programs, and the
term reflection to refer to the representation of aspects of a system in it-
self. Metaprogramming and reflection are often intimately connected, so
that metaprograms can use reflected information about their context in
the production of new programs. However, the specific facilities that are
available or desirable depend on the system in which they occur.

Smith [Smi84] founded the current tradition of research on reflection
in programming languages. He focused on making a Lisp interpreter ca-
pable of reflecting on its own operational semantics. This style of reflec-
tion is typically referred to as computational reflection or dynamic reflection,
and it has since seen wide application in a variety of contexts. Demers
and Malenfant [DM95] document some of the further development of
this idea in functional, object-oriented, and logic programming. However,
as this dissertation focuses primarily on reflection that occurs at compile
time, we will not document the breadth of work on computational reflec-
tion.

3.1 Quasiquotations in Programming Languages

The notion of quasiquotation was invented by Quine in his 1940 book
Mathematical Logic [Qui81, pp. 33–37]. While ordinary quotations allow
one to mention a phrase rather than using it, quasiquotations allow these
quoted expressions to contain variables that stand for other expressions,
just as mathematical expressions can contain variables that stand for val-

16 Chapter 3. Reflection and Metaprogramming

ues. In other words, a specific class of subexpression is treated as a use
within a context that is mentioned. Quine used Greek letters to represent
variables in quasiquotations. Søndergaard and Sestoft [SS90] explore ref-
erential transparency, an idea also due to Quine, as it relates to program-
ming languages, including in languages with quotations.

The paradigmatic instance of quasiquotation in programming lang-
uages is that found in the Lisp family. Bawden’s 1999 paper [Baw99] sum-
marizes the history and semantics of the quasiquotation mechanism found
in both the Scheme family of languages and in Common Lisp. In the Lisp
family, program code is represented in a uniform manner, using lists
that contain either atomic data, such as symbols, strings, and numbers,
or further lists. In Lisp parlance, these structures are referred to as “S-
expressions”. Because S-expressions are simply ordinary data, it makes
sense to quote them, yielding a structure that can easily be manipulated.
Additionally, most Lisps have a quasiquotation system, in which specially
marked subexpressions of a quotation are evaluated, with the result sub-
stituted into the quotation. Unlike Quine’s quasiquotation, the Lisp family
of languages allow arbitrary expressions to be inserted into quasiquota-
tions.

Languages outside of the Lisp family have also used quasiquotation
to implement language extension. The Camlp4 system [Rau03] provides
quasiquotation for the OCaml language, among other extensions. Quasi-
quotations in Camlp4 consist of arbitrary strings that are transformed by
a quotation expander to either a string representing valid concrete syntax or
to an abstract syntax tree. These quotations support antiquotation, which
invokes the parser to read an OCaml expression or pattern inside of the
quotation. Template Haskell’s quasiquotations [Mai07] work on similar
principles. Both systems fully expand all quotations at compile time, and
both check that the generated code is well-typed.

The MetaML family of metaprogramming facilities [TS00], including
MetaOCaml [MOC] and F# [Sym06], implement a style of quotation in
which the type of quoted expressions is parameterized over the type that
would be inhabited by the quoted expression if it were spliced into a
program. These features are intended for use in staged computation. In
addition to representing the types of the quoted expressions, these stag-
ing annotations feature static scope, so a quotation that contains a name
contains the version of that name from the scope in which the term was
quoted.

Barzilay [Bar06] defined a form of quasiquotation called operator shift-

3.2. Static Reflection 17

ing to implement reflection in the Nuprl proof assistant. Like Lisp, Nuprl
has a uniform representation of terms as operators applied to a collection
of operands. Unlike Lisp, the Nurpl term representation has a uniform,
built-in means of representing binding structures. The shifted represen-
tation of an operator simply decorates the operator as denoting a quoted
version of itself, and the binding structure is left intact, in a form of higher-
order abstract syntax where exotic terms are ruled out through a syntactic
restriction.

Scala quasiquotations [SBO13] are very much like Lisp quasiquota-
tions. While their syntax resembles that of strings, this is a consequence
of their implementation using Scala’s string interpolators and they are
in fact expanded to tree structures at compile time. The quasiquotations
were initially intended to serve as a technique for implementing Scala
macros [Bur13], but they are also useful for both runtime code genera-
tion as well as generating program text. Scala macros closely resemble
Lisp macros, in that they do not intend to allow arbitrary strings to be
used as syntax, but instead implement transformations from one valid
parse tree to another. Unlike Lisp, Scala programs that contain macros
are type checked after macro expansion, and they are represented by a
conventional tree structure that macros manipulate. Quasiquotations are
a means of constructing and destructuring these trees using the syntax of
the high-level Scala language.

Like Scala, C# is an object-oriented language with a notion of quota-
tion [C#E]. In C#, quotation can be applied to an anonymous function
by annotating it with the Expression type, which causes a datatype repre-
senting the function’s AST to be generated instead of the function itself.
However, this feature cannot properly be considered quasiquotation, as
there is no mechanism for escaping the quotation and inserting a sub-tree
that has been generated elsewhere.

3.2 Static Reflection

Racket has perhaps the most advanced static reflection features of any
language. Racket’s “languages as libraries” [Tob+11] features allow entire
new languages can be defined in Racket. Each module specifies the lan-
guage in which it is written, and languages are defined by libraries that
control both parsing and the expansion of modules into a core language.
These libraries can make use of arbitrary Racket code during expansion,

18 Chapter 3. Reflection and Metaprogramming

and they have access to a rich environment of metadata about the system.
Both Template Haskell [SJ02] and Scala’s macro system [Bur13] sup-

port querying the global state of the compiler during metaprogram exe-
cution, using this reflection to inform code generation and metaprogram-
ming.

While popular object-oriented languages such as Java and C# gener-
ally have poor support for static reflection, the research community has
produced some static reflective metaprogramming systems for them. A
popular approach has been pattern-based reflection, where classes can
be defined by recursion over the structure of other classes. Examples of
this approach include Genoupe [DLW05], class morphing [HZS07], and
Miao and Siek’s [MS14] metaprogramming system for Java. Research has
typically focused on increasing the safety of metaprograms. However, it
is somewhat unclear to what extent these tools should be classified as re-
flection according to the definition used in this dissertation, because the
language used to represent and process reified definitions is typically not
the programming language itself, but rather a special-purpose DSL.

3.3 Reflection and Dependent Types

With inductive-recursive families, dependently typed languages are pow-
erful enough to represent dependent type systems internally. In other
words, in sufficiently rich dependently typed languages, it is possible to
define a datatype of terms that represent dependently typed languages
such that only the well-typed terms can be represented. This line of work
was begun by Danielsson [Dan07], and it was continued by Chapman
[Cha09] and McBride [McB10]. Additionally, closed type theories like the
one planned for Epigram 2 [Cha+10b] remove the distinction between
datatypes that are represented in some universe and those that are de-
fined ahead of time as extensions to the type theory. Rather than attempt-
ing to model the semantics of type theory in type theory, Devriese and
Piessens [DP13] construct a model of well-typed terms and datatypes that
is explicitly intended for use in metaprogramming. They provide two ex-
amples: a code generator that derives a function to render elements of a
type to strings as well as a type-safe implementation of Coq’s assumption
tactic. While these encodings have good type safety properties, they un-
fortunately require a titanic effort to implement and use.

The Nuprl team have experimented with multiple implementations of

3.3. Reflection and Dependent Types 19

reflection. Knoblock [Kno87] focused on reflecting the metalogic of Nuprl,
implementing Nuprl-level versions of the judgment forms and refiner,
resulting in an infinite tower of reflected proof systems. His focus was
on creating verified proof tactics, such that a tactic to be used at level 𝑛
could be verified by the system found at level 𝑛 + 1. Allen et al. [All+90]
describe an alternative notion of reflection of the logic in which a fixed-
point construction is used to represent proofs within a single language.
Both of these approaches rely on a datatype that represents terms as well
as proofs - in some sense, they provide a deep embedding of aspects of
Nuprl in itself.

All of the above implementations of reflection in dependent types are
instances of what Barzilay [Bar06] refers to as indirect reflection in his Ph.D.
thesis on reflection in Nuprl. Indirect reflection is a form of reflection in
which a language or parts of a language are reimplemented in the reflec-
tive model. Barzilay identifies a number of downsides of indirect reflec-
tion:

• implementing a complex system, like a type checker, is a great deal
of work

• ensuring a perfect correspondence between the reflected portions
of the implementation and the original implementation is a major
task

• the size of a term’s representation will typically grow exponentially
with each level of quotation that is applied

Instead, he suggests the use of direct reflection, in which the existing im-
plementation is exposed to the object language.

3.3.1 Agda’s Reflection System

Agda, a close relative and predecessor of Idris, has a reflection system that
has been used to implement non-trivial proof automation and code gen-
eration features. Though the system is primarily documented in Agda’s
release notes [Agda], some examples of its use exist, including its use for
deriving instances in Ulf Norell’s alternative standard library1 and in a

1Avaliable from https://github.com/UlfNorell/agda-prelude/ at the time of writing

https://github.com/UlfNorell/agda-prelude/

20 Chapter 3. Reflection and Metaprogramming

convenient interface to the Agda standard library’s semiring solver by Je-
dynak.2 Additionally, there have been applications and descriptions in
the academic literature. van der Walt’s M.Sc. thesis [vdW12] and the asso-
ciated paper [WS12] contains a description and analysis of Agda’s reflec-
tion capabilities anno 2012. In 2012, Agda’s reflection mechanism lacked
key features, such as the ability to generate new pattern-matching defi-
nitions, which meant that it was unsuitable for tasks such as automating
the Bove-Capretta transformation [BC03]. However, it has since been ex-
tended with the ability to unquote definitions as well as terms. Addition-
ally, van der Walt pointed out that transformations written using Agda’s
reflection are inherently untyped, which means that Agda’s type system
cannot be used to enforce their correctness — a feature shared by the re-
flection system described in this dissertation. The advantage of an un-
typed reflection system is that it allows an escape from the type system,
and traditional proof by reflection can still be used to implement verified
proof automation.

Later, Kokke and Swierstra [KS15] implemented a general-purpose
proof search, modeled on Prolog, and used reflection to enable it to be em-
ployed for proof automation. Because this proof search is implemented
entirely in Agda itself, it can be extended and customized using Agda’s ex-
cellent development environment and tools. However, Kokke and Swier-
stra had to implement essentially the entire system themselves, using re-
flection at the borders to connect their model of terms to actual Agda
terms. Because of this, the framework supports only first-order unifica-
tion, failing even on simple cases such as Σ types being used to model
non-dependent pair types. This is an example of the difficulty of imple-
menting indirect reflection.

2Available from https://github.com/wjzz/Agda-reflection-for-semiring-solver at
the time of writing

https://github.com/wjzz/ Agda-reflection-for-semiring-solver

Chapter 4

The Idris Elaborator

Idris is a quite complex language, with many interacting features. Rather
than attempting to write a correct type checker for all of Idris, the com-
piler is implemented as a multi-stage process in which the desugared
high-level Idris program is first elaborated to a simple core theory, called
TT. In TT, all global names are fully qualified, all local names are resolved
to de Bruijn indices, all arguments are explicit, and features such as type
classes have been completely removed. If elaboration succeeds, the fully-
explicit program is then type checked again. Because TT is such a simple
language, its type checker can be similarly simple — in particular, it need
not perform unification. This reduces the size of the trusted code base.

Additionally, the strict separation between the high-level language and
the core language frees implementers to extend the high-level language
without fear of undermining the safety of the system as a whole. New
extensions to Idris should therefore be explained by giving their transla-
tions to TT.

The overall architecture of the Idris compilation process is described
in Figure 4.1. First, the high-level Idris language is desugared to a form
that Brady [Bra13b] refers to as Idris−, in which features like conditional
expressions have been replaced by function calls and implicitly quantified
variables have been added. Because this dissertation is concerned with
the elaboration and type checking process, details about the subsequent
code generation process will not be described.

The Idris elaborator, described in detail in Brady’s 2013 paper [Bra13b],
uses proof tactics to translate desugared Idris to the core type theory TT.
When elaborating a language such as Idris, there are a number of lan-
guage features that can interact in complex ways to obtain the informa-

22 Chapter 4. The Idris Elaborator

Idris Idris−

TT Executable

Desugaring

ElaborationType
Checking

Code Generation

Figure 4.1: The Idris compilation process.

tion necessary to produce a term in TT. For instance, resolving a multi-
parameter type class might lead to one of its arguments becoming known,
which may enable the solving of an implicit argument, which may cause
a where-bound definition to type check, which may itself provide infor-
mation that makes it possible to resolve further type class instances. This
complex interplay of language features could quickly lead to special-case
code that is difficult to maintain. When writing the present version of
Idris, Brady’s solution to this problem was to incrementally build terms
in a manner that allows the tracking of dependencies between language
features without requiring special-case handling of each of them.

The Idris term elaborator is implemented in Haskell, using a monad
that has both state and error effects. Rather than a general exception-hand-
ling mechanism, the error handling of the elaborator supports only recov-
ery, with no means of distinguishing between thrown exceptions. The
state consists of

• a goal type, which is the type of the term that is under construction;

• a possibly-incomplete proof term, which should inhabit the goal type
at the end of elaboration;

• a hole queue, tracking the incomplete portions of the proof term;

• a collection of open unification problems, representing recoverable
failures of unification that may yet unify once more variables are
solved; and

4.1. The Core Language 23

• various deferred operations, such as the bodies of case blocks that
need to be elaborated.

Additionally, the elaborator has read-only access to portions of the global
Idris state, such as the global definition context.

In addition to the term elaborator, there is also a definition elaborator
for each form of top-level definition. The definition elaborators invoke
the term elaborator for Idris terms that occur in definitions, and then use
the resulting TT terms to produce definitions in the global context. For
example, to elaborate a function definition

plus : Nat -> Nat -> Nat
plus Z k = k
plus (S j) k = S (plus j k)

the definition elaborator must first invoke the term elaborator with the
goal Type to elaborate the type signature. When this is done, the left- and
right-hand-sides of each definition clause can be elaborated as terms, tak-
ing into account the type that was elaborated for plus.

The concrete manipulations of the elaboration state are performed by
a collection of operations that are called tactics, by analogy to the oper-
ations available in proof assistants. These tactics can place a term into a
hole, create new holes, introduce binders, and more. While Appendix A
contains a complete list of these tactics, we introduce them as they are
first used in this example.

4.1 The Core Language

To prevent confusion with high-level Idris, TT will be written in mathe-
matical syntax. The term language of TT is given by three syntactic cate-
gories: terms, constants, and binders. These are defined in Figure 4.2. In
addition to this syntax, when 𝑥 is not free in 𝑡2, we will sometimes write
𝑡1 → 𝑡2 as an abbreviation for ∀ 𝑥 ∶ 𝑡1 . 𝑡2.

The category 𝑐 of constants includes additional primitive types and
their canonical values, such as characters, machine integers, and floating-
point numbers. The universe hierarchy is predicative, with cumulativity;
however, universe annotations are not required because a solver is used
to ensure that there are no cycles in the universe graph. The details of
the predicative hierarchy are outside the scope of this dissertation, so ⋆

24 Chapter 4. The Idris Elaborator

𝑡 ∶∶= 𝑐 Constants
∣ x Variables
∣ 𝑏 . 𝑡 Variable bindings
∣ 𝑡 𝑡 Application
∣ T Type constructors
∣ C Data constructors

𝑏 ∶∶= 𝜆 x ∶ 𝑡 Functions
∣ let x ↦ 𝑡 ∶ 𝑡 Let-bindings
∣ ∀ x ∶ 𝑡 Dependent function types

𝑐 ∶∶= ⋆𝑖 Type universes
∣ 𝑖 Integer literal
∣ Integer Integer type
∣ 𝑠 String literal
∣ String String type
∣ …

Figure 4.2: The grammar of terms 𝑡, binders 𝑏 , and constants 𝑐 in Idris’s core language TT.

will be written without subscripts for the remainder. The typing rules
and operational semantics of TT are completely standard; please refer to
Brady’s 2013 paper [Bra13b] for details.

4.2 Pattern-Matching Definitions and Data Types

Evaluation and type checking of TT terms occurs within a global context
that defines inductive families [Dyb94] and pattern-matching definitions.
Note that the TT term language has no built-in means of destructuring
inductively-defined data types, such as a case expression — all pattern-
matching occurs in top-level definitions.

A pattern-matching definition in TT consists of two parts: a type dec-
laration and zero or more clauses. Each clause consists of zero or more
pattern variable bindings, a left-hand side, and a right-hand side.

For example, the type declaration for addition on the natural numbers
is written

plus ∶ ∀ j ∶ Nat . ∀ k ∶ Nat . Nat

4.3. The Development Calculus 25

and its clauses are written
pat k ∶ Nat .

plus Z k ↦ k
pat j ∶ Nat . pat k ∶ Nat .

plus (S j) k ↦ S (plus j k)
where the argument names need not coincide between the declaration
and the various cases. All clauses must apply the function being defined
to the same number of arguments, and the left and right sides of each
clause must have convertible types.

The datatype Nat of Peano-style natural numbers is represented with
the following definition in TT:

data Nat ∶ ⋆ where
Z ∶ Nat
S ∶ ∀ k ∶ Nat . Nat

Inductive families can have both parameters and indices. Parameters
are used consistently across all constructors and depend only on fixed
types and other parameters; indices can vary across constructors. For prag-
matic reasons, neither TT nor Idris require that all parameters occur syn-
tactically before all indices in type constructors.

McBride’s heterogeneous equality type, also known as John Major equal-
ity due to an obscure joke about British politics in the 1990s, is represented
as follows in TT:

data (=) ∶ ∀ A ∶ ⋆ . ∀ B ∶ ⋆ . ∀ x ∶ A . ∀ y ∶ B . ⋆ where
Refl ∶ ∀ A ∶ ⋆ . ∀ x ∶ A . (=) A A x x

For the sake of readability, we abbreviate the homogeneous propositional
equality (=) 𝑡1 𝑡1 𝑡2 𝑡3 as 𝑡2 =𝑡1 𝑡3.

4.3 The Development Calculus

Conor McBride’s 1999 thesis [McB99] describes a development calculus in
which a core dependently typed language is extended with new binding
forms representing holes and guesses. The TT development calculus has
the following additional binders:

𝑏 ∶∶= …
∣ ?x ∶ 𝑡 Hole
∣ ?x ≈ 𝑡 ∶ 𝑡 Guess

26 Chapter 4. The Idris Elaborator

Representing holes as a binding form allows both their types and any sug-
gested values to refer to variables from the surrounding context. Addition-
ally, because holes bind new variables, dependencies between terms and
types are naturally represented. The identity function applied to a proof
of the reflexivity of equality for some unknown natural number might
then be:

?k ∶ Nat . 𝑖𝑑 (k =Nat k) (Refl Nat k)

This term, even though it is incomplete, can be type checked. At the same
time, it is not necessary to have any special machinery for representing
metavariable contexts or types.

4.4 Elaboration Example

In this high-level description of elaboration, the elaborator language is
represented using some typographical conventions to enhance readabil-
ity. Following Brady [Bra13b], object-language names are written undec-
orated in the metalanguage. The operation ℰ J⋅K is the the term elabora-
tor, which elaborates an Idris− term into the currently-focused hole. The
related operation 𝒫 J⋅K is the pattern elaborator, which elaborates Idris−
terms that occur in pattern contexts. The pattern elaborator is almost iden-
tical to the term elaborator, except that holes remaining after elaboration
are converted into pattern variables rather than reported as errors. Finally,
there are elaboration procedures for each variant of top-level definitions
of the high-level Idris language, such as datatype definitions, record dec-
larations, function type declarations, pattern-matching definitions, type
classes, and instances.

Names that are written in typewriter font denote names that occurred
in the user’s program, while names that are written in mathematical italic
denote fresh names. A Haskell-style do-notation is used, with the typical
monadic semantics, but the code is not intended to be Haskell — rather,
it is an idealized language whose interpreter is written in Haskell. As
the example proceeds, successive additions to the elaboration script are
highlighted in yellow.

The purpose of this section is not to define the elaboration procedure;
for that, please consult Brady [Bra13b]. Rather, it is to explain the pro-
cedure through a concrete example of a realistic function. Later, in Chap-

4.4. Elaboration Example 27

ter 7, we will explain how to implement quasiquotation in this framework,
and in Chapter 9, we will make this language available to Idris itself.

4.4.1 Desugaring

The example definition to be elaborated is the following:

replicate : (n : Nat) -> a -> Vect n a
replicate Z x = []
replicate (S k) x = x :: replicate k x

Prior to elaboration, the implicit arguments are discovered and syntactic
sugar is removed, yielding:

replicate : {a : _} -> (n : Nat) -> a -> Vect n a
replicate {a} Z x = []
replicate {a} (S k) x = (::) {a=_} {n=_} x (replicate {a=_} k x)

In Idris−, all implicit bindings are made visible, do-notation is replaced
with appeals to the bind operator >>=, and the if-then-else syntax is re-
placed with a call to the appropriate function. In Idris, function argu-
ments declared with curly braces (such as a above) are implicit arguments
that will be found by the elaborator. As in Haskell, integer literals are
desugared to applications of an operator fromInteger, but unlike Haskell,
this operator can be overloaded on an ad hoc basis and does not require
an implementation of the entire Num type class.

4.4.2 Elaborating the Type

The first step following desugaring is to elaborate the type that was pro-
vided for replicate. Because a type declaration is declaring a type, the
elaboration goal is ⋆. Elaboration proceeds by recursion over the syntac-
tic structure of the declared type. At the beginning of elaboration, the state
is:

Goal ⋆

Term ?h ∶ ⋆ . h

Holes h

28 Chapter 4. The Idris Elaborator

and the high-level Idris term being elaborated is {a : _} -> (n : Nat) ->
a -> Vect n a.

The topmost node in the Idris AST is the function type. When elaborat-
ing a function type, the first step is to produce a new hole for the argument
type, after which this hole is used as the argument type in a fresh func-
tion space binder. Following this, the Idris representation of the argument
type is elaborated into the hole. In this case, the type of the argument a
is a type, so we can elaborate it with the goal ⋆. The claim tactic is used
to introduce a new hole ta that is available in the current hole h’s scope.
Running claim ta ∶ ⋆ thus yields the following elaborator state:

Goal ⋆

Term ?ta ∶ ⋆ . ?h ∶ ⋆ . h

Holes h, ta

Now that there is a representation for the type of a, the dependent
function type itself can be elaborated. To produce a dependent function
type, the elaborator uses the forall tactic, which takes a name and a type
and surrounds the focused hole with a dependent function binding. The
tactic script is, thus far,

do claim ta ∶ ⋆
forall a ∶ ta

and the resulting elaborator state is

Goal ⋆

Term ?ta ∶ ⋆ . ?h ∶ ⋆ . ∀ a ∶ ta . h

Holes h, ta

The next step is to elaborate the value of a’s type, which is currently
represented by the hole ta. The elaborator therefore focuses on ta using
the focus tactic, which brings its argument to the beginning of the hole
queue. The tactic script is, thus far,

do claim ta ∶ ⋆
forall a ∶ ta
focus ta

and the resulting elaborator state is

4.4. Elaboration Example 29

Goal ⋆

Term ?ta ∶ ⋆ . ?h ∶ ⋆ . ∀ a ∶ ta . h

Holes ta, h

Note that ta is now at the head of the hole queue, and thus in focus.
The type of a is the placeholder term _, because the user did not pro-

vide an annotation. When the elaborator encounters a placeholder, it aban-
dons the hole, expecting that it will be solved later via unification con-
straints. This abandonment is achieved through the use of the unfocus
tactic, which sends its argument to the end of the hole queue, bringing
the next hole into focus.

The outermost binding of the type (the binder {a : _} ->) has now
been elaborated. What remains to be elaborated is the body (n : Nat) ->
a -> Vect n a. Once again, claim is used to establish a hole for the type
of the argument n and forall establishes a dependent function binding
around the hole h. This time, however, a concrete type is available, so it
can be elaborated immediately instead of being deferred with unfocus.

The fill tactic places a term in the current hole. The global Idris name
Nat resolves to the TT type constructor Nat, so the tactic script and elabo-
rator state are now:

do claim ta ∶ ⋆
forall a ∶ ta
focus ta
unfocus ta
claim tn ∶ ⋆
forall n ∶ tn
focus tn
fill Nat

Goal ⋆

Term ?ta ∶ ⋆ . ?h ∶ ⋆ . ∀ a ∶ ta . ?tn ≈ Nat ∶ ⋆ . ∀ n ∶ tn . h

Holes tn, h, ta

The hole tn now contains a guess: namely, Nat. The solve tactic substi-
tutes this guess in the scope of the hole binder and removes it from the
hole queue, yielding

30 Chapter 4. The Idris Elaborator

⋮
claim tn ∶ ⋆
forall n ∶ tn
focus tn
fill Nat
solve

Goal ⋆

Term ?ta ∶ ⋆ . ?h ∶ ⋆ . ∀ a ∶ ta . ∀ n ∶ Nat . h

Holes h, ta

What remains to be elaborated into h is the type a -> Vect n a. Be-
cause the user has not provided a name for this binding, a fresh name x
is used. Otherwise, this process is the same as for earlier dependent func-
tion bindings.

⋮
fill Nat
solve
claim tx ∶ ⋆
forall x ∶ tx
focus tx
fill a
solve

Goal ⋆

Term ?ta ∶ ⋆ . ?h ∶ ⋆ . ∀ a ∶ ta . ∀ n ∶ Nat . ∀ x ∶ a . h

Holes h, ta

Finally, it is time to elaborate the result type of the function, Vect n a,
into h. Vect has no implicit arguments, so we need only establish holes for
its visible arguments, again using claim. Just as the elaborator determined
that Vect has no implicit arguments by consulting the global context, it
also discovered the elaborated forms of these arguments types. After es-
tablishing argument holes, fill is used to place the operator applied to its
operand holes into the present hole.

4.4. Elaboration Example 31

⋮
fill a
solve
claim a1 ∶ Nat
claim a2 ∶ ⋆
fill Vect a1 a2
solve

Goal ⋆

Term ?ta ∶ ⋆ . ∀ a ∶ ta . ∀ n ∶ Nat . ∀ x ∶ a .
?a1 ∶ Nat . ?a2 ∶ ⋆ . Vect a1 a2

Holes ta, a1, a2

After solving h, the elaborator focuses on each argument in turn, elab-
orating the argument from the source code. The first of these is a1, which
the elaborator will fill and solve based on the source term n, after which
it focuses on a2.

⋮
fill Vect a1 a2
solve
focus a1
fill n
solve
focus a2

Goal ⋆

Term ?ta ∶ ⋆ . ∀ a ∶ ta . ∀ n ∶ Nat . ∀ x ∶ a .
?a2 ∶ ⋆ . Vect n a2

Holes a2 , ta

When a2 is filled with a, the elaborator unifies the type of the hole
with the type of the expression being placed in it. Unification succeeds
immediately, yielding the constraint ta = ⋆, which induces a substitution
of the hole ta. Thus, both holes are dispatched at once. The final tactic

32 Chapter 4. The Idris Elaborator

script and proof term are:

do claim ta ∶ ⋆
forall a ∶ ta
focus ta
unfocus ta
claim tn ∶ ⋆
forall n ∶ tn
focus tn
fill Nat
solve
claim tx ∶ ⋆
forall x ∶ tx
focus tx
fill a
solve
claim a1 ∶ Nat
claim a2 ∶ ⋆
fill Vect a1 a2
solve
focus a1
fill n
solve
focus a2
fill a
solve

Goal ⋆

Term ∀ a ∶ ⋆ . ∀ n ∶ Nat . ∀ x ∶ a . Vect n a

Holes None

Finally, the resulting term is re-checked against the goal type using
the core type checker, which does not contain complex features such as
unification, in the interest of reducing the trusted code base. When this
succeeds, the declaration elaborator adds the type signature for replicate
to the global environment along with a specification of which arguments
are to be provided implicitly.

4.4. Elaboration Example 33

4.4.3 Elaborating the Cases

Because a pattern-matching function definition extends TT with new re-
duction rules, it is imperative that both sides of each equation have the
same type so that subject reduction is preserved. However, Idris function
type declarations do not distinguish between the arguments that occur
on the left-hand side of the definition from those that will be processed
by the value of the right-hand side, which makes it difficult to know the
types of the two sides ahead of time. Additionally, the concrete construc-
tors matched in patterns can refine the type of the application as a whole,
which means that the type will vary from pattern to pattern.

This means that the two sides should be elaborated in a context in
which their types can be inferred. However, the elaboration infrastruc-
ture that has thus far been presented requires an explicit goal type, and
uses that goal type for things like solving implicit arguments by unifica-
tion. The solution to this is to establish a context in which the type can be
inferred. This is done using the following auxiliary datatype:

data Infer ∶ ⋆ where
MkInfer ∶ ∀ t ∶ ⋆ . ∀ x ∶ t . Infer

By using Infer as the goal and leaving the first projection the construc-
tor MkInfer as a hole, the term elaborator can build a term in the second
projection while imposing constraints that can lead to the solving of the
first projection automatically. Then, the elaborator can project the desired
type and term from the constructor and use the type as the goal for the
right-hand side.

The first case to elaborate is the Idris equation replicate {a} Z x = [].
The first step in elaboration is to establish the type inference context, using
the following script:

do claim t ∶ ⋆
claim h ∶ t
fill (MkInfer t h)
solve
focus h

Then, the left-hand side is elaborated into h. Because it is an application,
holes will be generated for each argument, and the provided argument
term will be recursively elaborated into its hole. However, in a pattern
context, the elaboration procedure for names is slightly different than in

34 Chapter 4. The Idris Elaborator

an expression context: if filling the hole with the name doesn’t work, the
hole is instead filled with a pattern variable that has the given name.

Once h has been filled with the concrete term, the elaborator projects
the left hand side and its type out of the MkInfer constructor. Then, the
type can be used as a goal for the right hand side, under the same pattern
variables.

When the pattern-matching cases have been elaborated, they are re-
checked just as the type signature was. Then, they can be added to TT as
new reduction rules.

4.5 Binders in the Elaborator

In the interest of simplicity, the previous section papered over a detail
about the elaboration process. Tactics such as forall, intro or letbind that
produce new binders around the focused hole have an additional precon-
dition: the scope of the hole binder must consist precisely of a reference
to the hole. If this precondition is not met, then they fail.

To see why this precondition is necessary in general, take the focus
to be ?h ∶ 𝑡1 → 𝑡1 . 𝑓 h and the high-level Idris term being elaborated
to be \x => x. Following the ordinary rules of elaboration, the next step
would be to use the intro tactic. However, this would result in the term
𝜆 x ∶ 𝑡1 . ?h ∶ 𝑡1 . 𝑓 h. In other words, the application of 𝑓 has been moved
underneath the lambda, rather than being applied to the function as a
whole.

One possibility would be to change the semantics of the binding tactics
to wrap the references to the hole in a binder. However, if 𝑓 were to reduce
to a form that had multiple references to h, then the elaborator would need
to perform more work to track down all copies of h. The implementation
of the binding tactics in terms of the low-level term language would also
become quite a bit more complex. Additionally, performing the wrapping
in the scope of the hole binding may lead to unwanted computation, as
the two-stage fill-solve process is subverted.

The solution, first presented by McBride [McB99], is an additional tac-
tic called attack. If the focus is a hole h with type 𝑡, then attack fills ℎ with
a guess consisting of a new hole binding h′ with type 𝑡.

In the above example, running attack yields the term

?h ≈ (?h′ ∶ 𝑡1 → 𝑡1 . h′) ∶ 𝑡1 → 𝑡1 . 𝑓 h

4.5. Binders in the Elaborator 35

with a focus on h′. Now, applying the intro tactic results in the following
term:

?h ≈ (𝜆 x ∶ 𝑡1 . ?h′ ∶ 𝑡1 . h′) ∶ 𝑡1 → 𝑡1 . 𝑓 h

The hole h′ is then filled and solved by the just-introduced x, and focus
returns to h. The term is now:

?h ≈ (𝜆 x ∶ 𝑡1 . x) ∶ 𝑡1 → 𝑡1 . 𝑓 h

and h can be dispatched with solve, yielding the correct term 𝑓 (𝜆 x ∶ 𝑡1 . x).
The general recipe for introducing bindings is thus to bracket the ini-

tial binding tactic and the solution of the contained hole with attack and
solve. The elaborator calls attack when entering a new scope in the term
being elaborated, and it calls solve when leaving again.

Chapter 5

Reflection in Idris

By reflection, we mean the representation of aspects of a programming
language, such as terms or error messages, in the language itself. Perhaps
confusingly, there is also a technique for structuring proofs in a depen-
dently typed system that is known as proof by reflection, in which objects
in type theory are mapped to some simpler domain in which there ex-
ists a simpler or faster decision procedure along with appropriate proofs
to ensure the soundness of the mapping. Proof by reflection is accessibly
described by Bertot and Castéran [BC04] and Chlipala [Chl11]. To make
the terminological confusion worse, reflection in the sense of self-repre-
sentation is frequently used to automate the application of the proof tech-
nique reflection. In this dissertation, when confusion could result, these
two concepts are referred to as language reflection and proof by reflection,
respectively.

In the context of Idris, there is an experimental form of well-typed re-
flection, in which functions decorated with a certain modifier are allowed
to match intensionally against arbitrary syntax rather than against canon-
ical values when executed during type checking. This feature, described
by Brady [Bra13a], has somewhat unclear semantics due to the fact that
the procedures defined with it do not respect functionality, and further
description is outside the scope of this dissertation. Indeed, as it currently
stands, this feature makes Idris inconsistent. This should come as no sur-
prise, because it requires experimental extensions to the core language.
The new features described in Chapters 7 and 9 are at the level of the
elaborator and thus require no such changes, increasing our confidence
in their safety.

Prior to this dissertation work, Idris had a simple tactic language with

38 Chapter 5. Reflection in Idris

basic support for reflection [Idr14]. This tactic language had only rudi-
mentary support for constructing new tactics from old ones, requiring a
fairly convoluted appeal to reflected tactics in a manner that made recur-
sive tactics exceedingly difficult to define. The original reflection mecha-
nism translated the core type theory to two separate representations, TT
and Raw, corresponding to representations inside the compiler. The first
of these representations, TT, is used for terms that the compiler has type
checked. In this locally-nameless representation, all binders and all refer-
ences to global names have complete type annotations, global names in-
dicate whether they refer to constructors, type constructors, or functions,
and universes are annotated with their level in the predicative hierarchy.
The second, Raw, is used for terms that have not yet been type checked.
This representation uses explicit names for both bound and free variables
and its universes do not mention levels, as the type checker is expected
to assign the appropriate levels.

The datatype TT is defined in Figure 5.1. The constructor P represents
free variables to be looked up in the global context. The NameType states
whether the looked-up name denotes a data constructor, a type construc-
tor, an unresolved bound variable, or a function, and data and type con-
structors present information about their arities. Additionally, names re-
ferred to with a P contain the type that the name has in the global context.
The constructor V represents local variables, here with de Bruijn indices.
The constructor Bind takes a local name and a binder, binding that name
in its scope. Because both representations of terms have the same binders
available, Binder takes a type parameter for the terms that it contains. It
is defined in Figure 5.3, and described later in this chapter. The App con-
structor represents an application of one term to another. The constructor
TConst injects constants are injected from their own datatype Const, which
defines the primitive types and their elements. The constructor Erased rep-
resents a portion of a term that has been eliminated. This occurs when
the information can be reconstructed, or as a run-time optimization. The
constructor TType is the type of types, at some universe level. Finally, the
constructor UType represents the variant universes involved in uniqueness
types.

The datatype Raw, defined in Figure 5.2, is similar to TT. Instead of the P
and V constructors, it contains a single variable reference constructor Var,
and its constructor RType for the type of types has no universe annotation.

In both kinds of reflected Idris terms, all binders are represented uni-
formly, using either the Bind or RBind constructors. Because there are mul-

39

data TT : Type where
P : NameType -> TTName -> TT -> TT
V : Int -> TT
Bind : TTName -> Binder TT -> TT -> TT
App : TT -> TT -> TT
TConst : Const -> TT
Erased : TT
TType : TTUExp -> TT
UType : Universe -> TT

Figure 5.1: The TT datatype, representing terms received from the type checker.

data Raw : Type where
Var : TTName -> Raw
RBind : TTName -> Binder Raw -> Raw -> Raw
RApp : Raw -> Raw -> Raw
RType : Raw
RUType : Universe -> Raw
RConstant : Const -> Raw

Figure 5.2: The Raw datattype, representing terms to be submitted to the type checker.

tiple ways to bind variables, but only a single constructor for binding, an
auxiliary datatype is used to track the various binders, defined in Fig-
ure 5.3. In this datatype, the constructor Lam represents lambda abstrac-
tions, and its type argument is the type of the variable being bound. The
constructor Pi represents function types. Its first field is the type of the
argument to the function and its second field is the kind of the arrow,
representing its interactions with Idris’s experimental uniqueness types.
Because uniqueness typing is outside the scope of this dissertation, we
can safely ignore this field. The constructor Let represents let bindings
with type annotations and the values of bound variables. The construc-
tors Hole and Guess are used to represent partial terms during elaboration,
as described in Section 4.4. The constructor GHole is a representation of a
hole that will not be filled out during elaboration, but instead should be
converted to a top-level definition applied to all variables in scope. This is
used to implement Idris’s interactive features and user-visible holes, and
having it present in the reflection API makes it possible to write metapro-

40 Chapter 5. Reflection in Idris

data Binder : Type -> Type where
Lam : (ty : a) -> Binder a
Pi : (ty, kind : a) -> Binder a
Let : (ty, val : a) -> Binder a
Hole : (ty : a) -> Binder a
GHole : (ty : a) -> Binder a
Guess : (ty, val : a) -> Binder a
PVar : (ty : a) -> Binder a
PVTy : (ty : a) -> Binder a

Figure 5.3: Reified binders.

grams that do a great deal of work and then delegate to the user to carry
out some final steps. The constructors PVar and PVTy are used to repre-
sent pattern variables and their types. They will occur around the terms
that represent the left and right sides of a clause in a pattern-matching
definition.

Unlike Agda, which takes great pains to ensure that all names repre-
sented in a program have been directly written by a user, and thus keeps
the representation of reflected names completely abstract, Idris generates
many names itself. They have a structure and can be manipulated. For ex-
ample, metaprograms can generate auxiliary definitions and assign them
names that no user could ever type. Idris reflection represents names us-
ing the datatype in Figure 5.4. The UN constructor, short for “user name,”
represents a concrete name that a user has typed. When wrapped in a NS
constructor, a name is considered to be in a namespace, which is repre-
sented in reverse order, which is because a suffix of a namespace is used
for disambiguation. Thus, a name that is written Prelude.Nat.(-) is repre-
sented in reflection as NS (UN "-") ["Nat", "Prelude"]. The constructor MN
represents a machine-generated name, with a unique integer correspond-
ing to the GENSYM counter in a Lisp along with a display hint. In addition to
these names, Idris has a collection of special names, representing names
for auxiliary definitions produced during the elaboration of with patterns,
case expressions, constructors of the record types underlying type classes,
and so forth. These special names are injected into the ordinary name type
using SN. In addition to the names used for the products of Idris’s elabo-
rator, SpecialName has a constructor MetaN with two fields holding names.
This constructor is intended to be used by metaprograms when they need

41

data TTName : Type where
UN : String -> TTName
NS : TTName -> List String -> TTName
MN : Int -> String -> TTName
SN : SpecialName -> TTName

Figure 5.4: Reified names.

record FunArg where
constructor MkFunArg
name : TTName
type : Raw
plicity : Plicity
erasure : Erasure

Figure 5.5: Reified argument specifiers.

another kind of internal name.
As a part of introducing new metaprogramming features to Idris, we

added additional datatypes representing reflections of definitions. These
datatypes are described here for the sake of having a single place to look
up definitions and details; please refer to Section 9.7 for a discussion of
the design.

Because TT does not have features such as implicit arguments and
type classes, the TT notion of a dependent function type is insufficient
to capture an Idris type declaration. In addition to the elaborated form
of the declaration, which is used for type checking, Idris also keeps track
of argument metadata. This metadata is represented in the FunArg record
type, defined in Figure 5.5. The plicity field tracks whether the argument
is implicit, explicit, or a type class instance, and the erasure field tracks
whether Idris should issue a warning if it is unable to erase the argument
at run time. The term plicity is Idris jargon for whether an argument is ex-
plicit or implicit. Type declarations for functions are represented by the
TyDecl record type in Figure 5.6, which provides a function name, an argu-
ment list, and a result type. Each argument’s type should be understood
as being in the scope of the previous arguments, and the result type is in
the scope of all of the arguments.

Function definitions do not need any extra metadata about high-level

42 Chapter 5. Reflection in Idris

record TyDecl where
constructor Declare
name : TTName
arguments : List FunArg
returnType : Raw

Figure 5.6: Reified function declarations.

data FunClause : Type where
MkFunClause : (lhs, rhs : Raw) -> FunClause

record FunDefn where
constructor DefineFun
name : TTName
clauses : List FunClause

Figure 5.7: Reified pattern-matching definitions.

Idris, so they are represented as in Figure 5.7 by a pair of a name and a
list of function clauses, each of which is simply a pair of a left and right-
hand side. The bound pattern variables are represented by PVar binders,
and the system ensures that they are consistent prior to admitting a new
definition by ensuring that the two sides of the clause have convertible
types (the type of a PVar binding is a PVTy binding).

Reflected datatype definitions contain both the kinds of high-level in-
formation about arguments that reflected type declarations contain, as
well as information that is not readily apparent in Idris datatype declara-
tions but must be discovered by the compiler. Unlike Coq and Agda, Idris
does not make a syntactic distinction between parameters and indices to
inductive families. Instead, the distinction is discovered by the compiler
based on their mode of use in the definition. Thus, reflected definitions
tag constructor and type constructor arguments with information about
their status as parameters.

43

data TyConArg = TyConParameter FunArg
| TyConIndex FunArg

data CtorArg = CtorParameter FunArg
| CtorField FunArg

record Datatype where
constructor MkDatatype
familyName : TTName
tyConArgs : List TyConArg
tyConRes : Raw
constructors : List (TTName, List CtorArg, Raw)

Figure 5.8: Reified datatype definitions.

Part II

Metaprogramming Idris

47

Support for metaprogramming, understood to mean programs that
generate or modify other programs, is an essential feature of a modern,
mature programming language. In particular, compile-time metaprogram-
ming allows generating or modifying programs during the type check-
ing and compilation process, but does not provide facilities for doing so
while programs are running. For a programming language with a static
type system, this allows the type system to make the same kinds of guar-
antees about the result of a metaprogram as it would about any other
program. Additionally, very expressive type systems can necessitate boil-
erplate code for explaining to the type checker exactly why a program is
well-typed. A metaprogramming system that runs at compile time can
eliminate some of the need for this boilerplate.

Background

The design space for a metaprogramming system is exceedingly large. In
some cases, the language used to write metaprograms (the metalanguage)
is the same as the language in which ordinary programs are written (the
object language). For example, the broad Lisp family, including Racket,
Scheme, Clojure, Common Lisp, and Emacs Lisp, provide rich facilities
for defining macros, which are programs that extend the syntax of the lan-
guage by translating the new operators to other programs. In Scheme and
its descendant Racket, a great deal of work has gone into the concept of
hygiene, which is enabling a macro system to automatically respect the
naming and scoping rules of its programming language. In other Lisps,
metaprogrammers must manually manage scope and take care to avoid
accidental variable capture, typically using side-effectful operations such
as GENSYM, which generates a name that is guaranteed to be fresh. Tem-
plate Haskell provides a computational context, the Q monad, in which
compile-time effects such as generating fresh names are available, as well
as a primitive operator for running a Q action during compilation, insert-
ing its result.

Other languages, such as C++ and Coq, have separate languages for
programming and metaprogramming. In some cases, such as C++, this
has occurred because the support for metaprogramming was an acciden-
tal consequence of a language extension that was not intended to be a com-
plete programming language. In others, such as Coq, it is because the met-
alanguage was intended to be more ergonomic than the object language.

48 Chapter 5. Reflection in Idris

Operations that only make sense while metaprogramming (such as pat-
tern matching on hypotheses in Coq’s LTac) can be added to a separate
metaprogramming language. Additionally, having a syntactic distinction
between phases can make it easier to identify which programs will run in
which phase.

However, there are major disadvantages to having separate languages
for separate phases: users must learn multiple programming languages,
tools such as syntax highlighters and IDEs must account for not only both
syntaxes but also the borders between them, and code cannot be re-used
between phases. In this part of the dissertation, we describe a collection of
metaprogramming subsystems for Idris that allow orthogonal extensions
to the language in support of code generation and domain-specific pro-
gramming. This metaprogramming system has been used to implement
the deriving of boilerplate code such as induction principles for datatypes,
to automate proofs in the style of Idris’s previous tactic language, and
to implement domain-specific languages that re-use portions of the Idris
elaborator. In some cases, it has replaced code that was previously a part
of the compiler, allowing more of Idris to impelemented in itself.

Chapter 6

A Pretty Printer that Says What it Means

This chapter is not based on previously-published papers; however, the
contents have been presented at two informal workshops. This is noted
in the section corresponding to each of the workshops presentations.

A programming language is more than a mathematical abstraction
that maps strings in some formal language to configurations of a Turing
machine. A large part of what makes programming languages interesting
is that we can implement them, yielding a usable system in which ideas
can be explored.

Previously, it was popular to look at an implementation of a program-
ming language as being essentially a batch-mode program that converts
input strings to either error messages or executable machine code, through
compilation or interpretation. While this model is still sometimes assumed,
it is increasingly common to view a language as more than just its syn-
tax and semantics. Today, the entire interactive environment that is avail-
able to programmers matters. This approach, pioneered in the Lisp and
Smalltalk communities, makes the programming environment into a kind
of assistant for the programmer, rather than an adversary whose arbitrary
discipline is harshly imposed.

Interactive proof assistants, as one might conclude from the name,
have a similarly strong tradition of attempting to assist their users, in
this case because of the incredible tedium of trying to write fully-explicit
proofs in small formal systems whose derivations are easy to check with a
short, understandable program. These have typically followed two broad
styles of user interface: a tactic interface in the broad tradition of LCF,
or direct constructions of terms or derivations with machine assistance.
Tactic languages such as ML and LTac, being programming languages in

50 Chapter 6. A Pretty Printer that Says What it Means

their own right, often support interfaces that are not very far divorced
from the read-eval-print loops (REPLs) and batch-mode processors of
older languages. Languages that assist in the direct construction of proofs
(and programs!) in a high-level notation, such as Agda 1, Alf [MN94], Epi-
gram [MM04], and Agda 2 [Agda], provide interfaces based on partial
programs that are built interactively by their users.

Environments such as Lisp machines, later stand-alone Lisp imple-
mentations, and Smalltalk images have provided excellent access to the
context within which a program is developed, including the exploration
of the accessible APIs and viewing metadata such as all callers or callees
of a given function or method. Their support for the interactive construc-
tion of programs has been comparatively limited, often supporting no
more than symbol completion — however, this is perhaps to be expected,
due to their lack of a static typing discipline to guide the construction.
On the other hand, the aforementioned implementations of type theory
provide comparatively poor interactive explorations of the environment,
while providing excellent assistance for writing programs.

While working on Idris, we have attempted to bridge the gap between
Agda-style interactive editing of programs and Lisp-style awareness of a
program’s environment. However, we have attempted to avoid the trap
of requiring a particular text editor as Epigram and (until recently) Agda
have done. This chapter describes an implementation strategy for mak-
ing semantic information from a compiler available to a variety of clients,
without preferring one over another. The presented technique is quite
straightforward; however, it has enabled a variety of useful features. The
technique is by no means specific to implementing dependently typed
languages, and should be just as applicable to other language implemen-
tations.

6.1 Presentations

The Dynamic Windows user interface toolkit on the Genera operating sys-
tem for Symbolics Lisp machines supported a user interface convention
known as the presentation [MYM89]. First defined by Ciccarelli [Cic84],
presentations are regions of program output that retain their association
with the underlying application object that they signify. For example, a
user could enter an expression at a REPL that evaluates to the name of a
function, then right-click the returned function name and look up meta-

6.1. Presentations 51

data about it from the resulting menu. Later, when a command is issued
that requires a function name as an argument, the previously-output func-
tion names “light up” under the user’s mouse pointer, and they can be
selected as the argument to the command. Because the interactive Lisp
environment relied on pervasive mutability, it is important to note that
what was presented was a pointer to an object — two presentations of the
same object are aliases, so mutations will affect both presentations.

In Dynamic Windows, presentations were not limited to output at a
REPL. McKay et al. [MYM89] give an example of a circuit diagram edit-
ing application where each component in the diagram is a presentation of
an underlying data model object. The very same components could also
be represented as text in a list of components, and the semantic link en-
sures that any command that applies to one representation also applies
to the others. This association between signifier and signified means that
the same commands are uniformly available at each representation of the
same data, and there is no need for a separate parsing step to re-recognize
previously-output information.

The Idris plugin for GNU Emacs1 supports a form of presentations
pervasively throughout the interface. When a term occurs in compiler out-
put, no matter whether it occurs at the REPL, in a proof context, or in an
error message, it can be right-clicked, which provides a list of commands
that includes normalizing the term, displaying the contents of implicit ar-
guments, and viewing its representation in TT. When names are output
by the compiler, they are associated with the underlying name object, en-
abling contextual access to commands such as looking up documentation
and viewing definitions, without a risk of confusion due to overloading.

Figures 6.1 through 6.4 demonstrate the kinds of interaction enabled
by this semantic association. In Figure 6.1, a user has attempted to apply
an evaluator that only works on closed terms to an open term. In the code,
Program is an alias for the type Expr 0. The resulting error message points
out the specific unification failure and displays the types that occurred
in the users’s code. However, the connection between Program and Expr is
not particularly clear from the error message. While this could be avoided
by normalizing all terms that occur in error messages, that would cause
aliases written by users to be far less useful. Likewise, normalized terms
can be vastly larger than the terms that actually occur in programs. In

1Available from https://www.github.com/idris-hackers/idris-mode at the time of
writing

https://www.github.com/idris-hackers/idris-mode

52 Chapter 6. A Pretty Printer that Says What it Means

Figure 6.1: An Idris type error. The user may not know where the 0 and 2 come from, nor what Program
refers to.

6.1. Presentations 53

Figure 6.2: Hovering over Program indicates that a menu is available and provides information about
the name under the pointer.

54 Chapter 6. A Pretty Printer that Says What it Means

Figure 6.3: Right-clicking Program displays the available commands.

6.1. Presentations 55

Figure 6.4: Selecting “Normalize term” makes the source of 0 clear.

56 Chapter 6. A Pretty Printer that Says What it Means

our interface for Idris in Emacs, the user has more possibilities. Figure 6.2
shows what happens when the user points her mouse at Program: Emacs
displays a tooltip with the documentation and type signature for Program
and the term lights up, indicating the presence of a menu. This menu con-
tains a number of commands, some of which pertain to the name Program
and some of which pertain to the term consisting of a reference to it. In
Figure 6.3, the user selects “Normalize term”. The result of this can be
seen in Figure 6.4, where Program has been replaced by its definition.

There is nothing Emacs-specific about this means of interacting with
Idris: any user interface toolkit that can be programmed to remember an
association between a region of the screen on which output has been per-
formed and an opaque token that represents Idris’s view of the semantics
can be used. The remainder of this chapter describes an extension to the
standard methods of building pretty printers that enables them to be used
as part of a presentation-style interface.

6.2 The Idris IDE Protocol

This section is based on joint work with Hannes Mehnert and has been
previously presented as a demonstration at the 2014 Workshop on De-
pendently Typed Programming in Vienna, Austria.

The overall design of the Idris IDE for Emacs is based on the SLIME2

and DIME3 environments for Common Lisp and Dylan, respectively. In-
stead of being an integrated, monolithic system like the Lisp machines or
like Smalltalk environments, these environments use a client-server archi-
tecture to enable interfaces such as Emacs to have the same high degree
of access to the compiler. In particular, editor commands are performed
using remote procedure calls over a socket.

The Idris IDE protocol continues this tradition. Commands for look-
ing up type information, submitting user programs to the type checker,
and editing programs with assistance from the compiler are encoded in
a machine-accessible format. In some sense, the REPL has been given a
machine-readable syntax in addition to its human-readable syntax, which
enables machines to assist humans in constructing appropriate requests
and interpreting the response.

2Available from https://common-lisp.net/project/slime at the time of writing
3Available from https://github.com/dylan-lang/dylan-mode at the time of writing

https://common-lisp.net/project/slime
https://github.com/dylan-lang/dylan-mode

6.3. Annotated Pretty Printing 57

To achieve the colors and easy accessibility of commands in Figures 6.1
through 6.4, output from the compiler is decorated with metadata de-
scribing its semantics prior to sending it to the text editor. Each string
sent from the compiler to the text editor is accompanied by a collection
of offset-length-properties triples. The properties applied to names in-
clude their unique, fully-qualified representations, a summary of their
documentation, their type signatures, and whether the represent bound
variables, functions, data constructors, or type constructors. Constants
are highlighted with information including their type, alternative repre-
sentations (e.g. hexadecimal notation for decimal machine integers), and
computed metadata such as the length of strings in characters. Whole
terms are annotated with a unique identifier for this term that can be used
to query the Idris compiler for more information about it. Because Idris
terms are immutable, there are no concerns about aliasing, so the unique
identifier can be a serialized binary representation of the term and its en-
vironment, freeing the compiler from remembering all of the previously-
displayed terms.

6.3 Annotated Pretty Printing

This section was previously presented as a talk at the Haskell Implemen-
ters’ Workshop 2015 in Vancouver, British Columbia, Canada.

A key component of the user interface of most programming language
implementations is the pretty printer, which is responsible for converting
from internal tree-structured data to a textual representation that is suit-
able to show to users. If there should be any hope of adding presentations
to a user interface, it is vital that the pretty printer can “say what it means”:
it must record the semantics of the sub-regions of the resulting strings, and
communicate this link to the user interface.

Pretty printers that are written using combinator libraries, such as
those of Hughes [Hug95] and Wadler [Wad03], are one of the successes of
that approach to library design. In these libraries, there is a datatype Doc of
documents, which are abstract representations of sets of concrete strings.
A rendering process selects which of these strings is best for some par-
ticular context, taking into account how many columns are available for
display. The library provides a collection of combinators for constructing
a Doc that express features such as concatenation of documents, optional
line breaks, and including a string in a document.

58 Chapter 6. A Pretty Printer that Says What it Means

The interfaces to Hughes’s and Wadler’s libraries are not identical. In
addition to differences in interface, Wadler’s approach requires a render-
ing step prior to outputting the document as a string. Because the tech-
nique described in this section is applicable to either style of pretty printer,
it will be presented in a slightly idealized manner. The additions to the
pretty printer API are orthogonal to the differences between the two ap-
proaches.

The first step in adding semantic information to a pretty printer doc-
ument is to represent it as a datatype. To avoid committing to a datatype
that might be inappropriate for some uses, the Idris pretty printer accom-
plishes this by abstracting the type of pretty-printer documents over a
type of semantic annotations. In other words, the Doc type should take a
parameter, and elements of Doc a are documents that signify an a.

The second step is to add a new primitive operator to the pretty print-
ing library: annotate :: a -> Doc a -> Doc a. The annotate operator adds
an annotation to a document, which may later become a subdocument of
another document.

Finally, the rendering process must be extended to enable the con-
veyance of the annotations onward to the user interface. However, this
process will vary depending on exactly which user interface is to be used.
For example, if the annotations are to be used to compute colors on a Unix
console, then the strings that result from annotated subdocuments must
be decorated with ANSI color escape codes. HTML and LaTeX should
be decorated similarly, except the contents of strings must be escaped. If
they are to be used to produce colored output on Microsoft Windows,
then the display process must run inside the IO monad so that side effects
can be used to change colors. If the annotations are to be sent over Idris’s
IDE protocol, then the string must be rendered as if there were no anno-
tations, but the annotations must be collected along with the regions in
the string that they correspond to.

There is a single rendering interface that is sufficient for all of the
above as well as being convenient to use. Its signature is:

displayDecorated :: (Applicative f, Monoid o)
=> (a -> f o) -> (a -> f o)
-> (String -> f o)
-> Doc a
-> f o

It takes three type parameters: a, which is the type of annotations, f, which

6.3. Annotated Pretty Printing 59

represents the effects that can be used to display the data, and o, which
is the type of intermediate results. The parameter f is an applicative func-
tor, which is an abstraction that is weaker than a monad, described by
McBride and Paterson [MP08]. The Applicative class supports sequenc-
ing of effects from left to right, rather than the arbitrary order of effects
given by Monad, and this is sufficient to render a document. The result
type must be a Monoid, because the rendering process needs a way to rep-
resent empty documents and a means of concatenating results. The first
two arguments are instructions for beginning and ending annotated sub-
documents. The third argument declares how to display an atomic string.
The fourth argument is the document to render.

To recover a pretty printer that ignores annotations, we invoke dis-
playDecorated as follows:

display :: Doc a -> String
display = runIdentity . displayDecorated doNothing doNothing pure

where doNothing = pure ""

In this invocation of displayDecorated, f is the trivial functor Identity and
o is String, and the Monoid instance for String is used to concatenate them.
It would be possible to use a writer monad for f and set o to (); however,
such an interface would be far less convenient to use. To output colored
strings on Windows, we invoke displayDecorated to use side effects:

display :: Doc Annot -> IO ()
display = displayDecorated start end putStr

Here, start and end make the appropriate API calls to set colors based on
names. If we wanted to additionally highlight overlapping regions, some
state would be necessary as well. The putStr action is used to write strings
to standard output. In this case, f is IO and o is the trivial monoid for (),
because we are not accumulating a result.

Sometimes, however, neither the computational context f nor the re-
sult o should be trivial. The function that computes both a string and a
collection of offset-length-annotation triples for Idris’s IDE protocol needs
to use a state monad to keep track of the position in the string (via track-
ing the lengths of output strings), the current stack of open annotated re-
gions, and the thus-far-collected closed annotation regions. Thus, it can
use State (Int, [(a, Int)], [(Int, Int, a)]) as f and String as o.

The type constructor Doc is a functor. This means that it is possible to
transform annotations using fmap, which means that we need not have

60 Chapter 6. A Pretty Printer that Says What it Means

all the information that we’d like to include in a display when a pretty-
printer is executed. Prior to rendering a document for output, fmap can
be used to populate the annotations with information from the global
context, such as documentation and type signatures. It can also be used to
combine annotated documents produced in different parts of a compiler
whose notions of annotations do not need to agree.

6.4 Conclusions

Annotated pretty printing allows pretty printers to say what they mean
by retaining enough of a compiler’s internal representation of data to pro-
vide an unambiguous means of indicating to the compiler which data
were intended. Just as pretty printing libraries allow code that generates
strings to be blissfully unaware of details like the width of the context in
which the string will be displayed, annotated pretty printing allows the
code that generates the strings to be unaware of how metadata will be
displayed and take a declarative approach.

By annotating each document with the object used to produce it, an an-
notated pretty printer enables the implementation of presentations, even
in editors that only have a text-driven interface to the underlying compiler.
This enables an exploratory style of user interface in which terms in error
messages, proof contexts, and other output from the compiler can be di-
rectly manipulated. These interactive interfaces are not tied to a specific
frontend, and can be implemented in a variety of editors or other tools.

Chapter 7

Quasiquotation

“[P]rograms must be written for people to read, and only
incidentally for machines to execute.”

Abelson and Sussman, Structure and Interpretation of
Computer Programs

This chapter is an expanded and revised version of a paper presented
at the 26th Symposium on Implementation and Application of Functional
Languages (IFL 2014) [Chr14b]. Since the publication of that paper, we
have extended Idris quasiquotations to be polymorphic, able to generate
both the Raw and TT representations of TT that are presented in Chapter 5.
This new extension is described in Section 7.4.

The metaprogramming features described in this dissertation allow
Idris to be used to implement extensions to itself. However, because all
type checking and evaluation occur using the core language TT, metapro-
grams must be able to both construct and destruct TT terms. Without spe-
cial support from the compiler, this process is error-prone and incredibly
tedious — even very simple Idris terms can expand to quite complicated
terms in TT. Furthermore, the Idris elaborator makes use of two different
representations of TT for different purposes (see Chapter 5 for details).
Keeping track of which representation is being used, and how that par-
ticular representation is used for some term of interest, diverts attention
from the actual work that the user is trying to accomplish.

Even worse, the correspondence between high-level Idris terms and
their TT equivalents is not always obvious, even to expert users of the
language. If one believes that programs exist first and foremost as a means

62 Chapter 7. Quasiquotation

of communication between humans, and thereafter for machines, then
another means of working is desirable. Luckily, Idris already contains an
elaborator that can transform high-level Idris into TT.

This chapter describes a technique for augmenting the high-level Idris
language with quasiquotations, in which the Idris elaborator is invoked to
transform high-level Idris into reflected TT terms using the very same
translation that produces TT terms for the type checker. Within quasi-
quoted terms, antiquotations allow other reflected terms to be spliced into
the quotation. In a pattern context, antiquotations become patterns to
be matched by the reflected term at the corresponding position. These
quasiquotations allow the best of both worlds: high-level syntax for the
uninteresting parts, with details filled in by type-directed elaboration, but
with full control over the details of term construction when and if it mat-
ters.

7.1 Example

To illustrate the difference in verbosity and complexity between a term in
the high-level Idris language and TT, it is sufficient to compare the natural
number 1, expressed in the typical Peano encoding, in each notation. In
the high-level Idris language, it is represented as S Z, the application of
the successor operation (named S) to zero (named Z). The representation
of this term in the TT datatype can be seen in Figure 7.1. Please refer to
Chapter 5 for the meanings of the constructors of TT and TTName.

Correctly constructing these reflected terms can be tedious. Addition-
ally, one must be careful to encode precisely the right details when pattern-
matching on reflected terms. In the above term, the type annotation on S
includes a machine-generated name, because the constructor’s type Nat
-> Nat is a special case of the dependent type (x : Nat) -> Nat. The name
x is constructed by the implementation during elaboration and is not pre-
dictable. In other cases, however, the particular name in a binding may
be important. Other details that most pattern matches should ignore in-
clude tag values and universe level indicators. We expect that the type
annotation on the P constructor will typically be irrelevant, though some
metaprograms or proof search procedures may be able use them to avoid
repeated lookups in the global context.

The example function isZeroR returns Just True when its argument is
reflection of Z, Just False when its argument is a reflection of an applica-

7.1. Example 63

App (P (DCon 1 1)
(NS (UN "S") ["Nat", "Prelude"])
(Bind (MN 0 "_t")

(Pi (P (TCon 0 0)
(NS (UN "Nat")

["Nat", "Prelude"])
Erased)

(TType (UVar -1)))
(P (TCon 0 0)

(NS (UN "Nat") ["Nat", "Prelude"])
Erased)))

(P (DCon 0 0)
(NS (UN "Z") ["Nat", "Prelude"])
(P (TCon 0 0)

(NS (UN "Nat") ["Nat", "Prelude"])
Erased))

Figure 7.1: S Z, represented in the TT datatype.

tion of S to any other term, and Nothing when it is any other term. Such
a function might be useful in a proof tactic. Even this simple function is
quite verbose:

isZeroR : TT -> Maybe Bool
isZeroR (P _

(NS (UN "Z") ["Nat", "Prelude"])
_) = Just True

isZeroR (App (P _
(NS (UN "S") ["Nat", "Prelude"])
_)

n) = Just False
isZeroR _ = Nothing

Compare this to its equivalent for non-reflected natural numbers:

isZero : Nat -> Bool
isZero Z = True
isZero (S n) = False

This version can return Bool instead of Maybe Bool because the type system
guarantees that it will never be called with a non-Nat argument. How-

64 Chapter 7. Quasiquotation

ever, the largest decrease in complexity comes from using Idris’s high-
level notation to define the patterns, rather than a datatype representing
core terms.

In contrast to the somewhat verbose definition above, the quasiquo-
tation mechanism described by this paper allows a definition of isZeroR
that is much more like the non-reflected version:

isZeroR : TT -> Maybe Bool
isZeroR `(Z) = Just True
isZeroR `(S ~n) = Just False
isZeroR _ = Nothing

The quotations, indicated by the backquote characters, cause the elabora-
tor to produce patterns that are precisely equivalent to those in the origi-
nal definition of isZeroR. The antiquotation of n, indicated by preceding n
with a tilde, causes the elaborator to treat the expression n normally; that
is, n becomes an ordinary pattern variable.

7.2 Idris Quasiquotations

Our quasiquotations extend both the high-level Idris language and its
desugared form Idris−. We extend the expression language with three
new productions:

𝑒, 𝑡 ∶∶= …
∣ `(𝑒) (quasiquotation of 𝑒)
∣ `(𝑒 ∶ 𝑡) (quasiquotation of 𝑒 with type 𝑡)
∣ ∼ 𝑒 (antiquotation of 𝑒)

The parts of a term between a quotation but not within an antiquota-
tion are said to be quoted. Every antiquotation must have a corresponding
enclosing quotation; that is, it is an error if the depth of nesting of an-
tiquotations exceeds the depth of nesting of their enclosing quotations.
The quoted regions of a term are elaborated in the same way as any other
Idris expression. However, instead of being used directly, the elaborated
TT terms are first reified, and this representation is then used. Antiquoted
regions are elaborated directly into the reified terms, which are inserted
as usual.

Names occurring in the quoted portion of a term do not obey the typ-
ical lexical scoping rules of names in Idris. This is because quoted terms

7.3. Elaborating Quasiquotations 65

are intended to be used in places other than where they are constructed,
and the location in the program where they are spliced may have com-
pletely different bindings for the same names. Therefore, all free names
in the quoted portion are taken to refer to the global scope. Because an-
tiquotations are ordinary terms, they obey the ordinary scoping rules of
the language.

Idris supports type-driven disambiguation of overloaded names. This
feature is used for everything from literal syntax for number- and list-like
structures to providing consistent naming across related libraries. This is
also used to allow “punning” between some types and their constructors.
For instance, the syntax () represents both the unit type and its construc-
tor in Idris, and (Int, String) can represent either a pair type or a pair
of types. In ordinary Idris programs, all top-level definitions are required
to have type annotations, so type information is available to aid in disam-
biguation. Because of this, Idris’s expression language does not include
type annotations on arbitrary subterms. In quasiquoted terms, however,
no top-level type annotation is available. Thus, the second variant of qua-
siquotation above allows an explicit goal type to be provided. Like a quoted
term, it is elaborated in the global environment. Because the goal type
does not occur in the final reflected term and simply exists as a short-
hand to avoid explicitly annotating names, goal types may not contain
antiquotations.

7.3 Elaborating Quasiquotations

We now describe quasiquote elaboration under the assumption that all
quasiquotations will be elaborated to the datatype TT. In Section 7.4, the
technique is extended so that quotations can produce both TT and Raw.

In addition to the elaborator tactics already described in Chapter 4,
this section makes use of four new meta-operations:

• anything, which introduces a hole whose type must be inferred;

• extractAntiquotes, which replaces antiquotations in a quasiquoted
Idris− term with references to fresh names, returning both the mod-
ified term and the mapping from these fresh names to their corre-
sponding antiquotation terms;

• reify, which returns a term corresponding to the reification of its
argument; and

66 Chapter 7. Quasiquotation

• reifyP, which returns a pattern corresponding to the reification of
its argument.

The operation anything 𝑛 can be defined as follows:

anything n = do claim n′ ∶ ⋆
claim n ∶ n′

This operator serves a different purpose than the Infer type described in
Chapter 4: while Infer is intended to serve as the goal type of an elabora-
tion process, in which both the resulting term and its type are desired as
output, anything is intended for situations in the middle of elaboration
where only the resulting term is of interest.

The operation extractAntiquotes is a straightforward traversal of an
Idris− term, replacing antiquotations with variables and accumulating a
mapping from these fresh variables to the corresponding replaced sub-
terms.

The operators reify and reifyP each take a term and a collection of
names of antiquotations (see Section 7.3.1) and return a quoted version
of the term. Antiquotation names, however, are not quoted. Additionally,
reifyP inserts universal patterns in certain cases — see Section 7.3.3 for
details.

7.3.1 Elaboration Procedure

We implement quasiquotations by extending the elaboration procedures
for expressions and patterns: ℰ J⋅K and 𝒫 J⋅K respectively. Elaborating the
quoted term proceeds through four steps, each of which is described in
detail below:

1. Replace all antiquotations by fresh variables, keeping track of the
antiquoted terms and their assigned names

2. Elaborate the resulting term in a fresh proof state, to avoid variable
capture

3. Quote the elaborated term:

a) When not in a pattern, quote the term, leaving antiquotation
variables free

b) When in a pattern, quote the term with additional universal
patterns

7.3. Elaborating Quasiquotations 67

4. Restore the local environment and elaborate antiquotations

Replace antiquotations We replace antiquotations with fresh variables
because they will need to be treated differently than the rest of the term.
Additionally, the expected types of the antiquotations must be inferable
from the context in which they are found, because the quotations that will
fill them provide no type information. Here, variables serve their typi-
cal function: they abstract over the antiquoted subterms, because the term
that will be constructed to fill an antiquotation at run time is unknown at
elaboration time. We remember the association between the antiquoted
terms and the names that they were replaced by so that the result of elab-
orating them can later be inserted.

Elaborate in a fresh proof state Quotations can occur in any Idris ex-
pression. However, names that occur in quotations are resolved in the
global scope, for reasons discussed in Section 7.2. Because the scopes of
local variables are propagated using hole contexts in the proof state, it is
sufficient to elaborate the quoted term in a fresh state. The replacement
of antiquotations with references to fresh names means that there is no
risk of elaborating the contents of the antiquotations too early. However,
when the elaborator reaches these names, it will fail, because they are
unknown. To fix this problem, we first use the anything meta-operation
that was defined above to introduce holes for both these names and their
types. Because this stage of elaboration occurs in term mode, rather than
pattern mode, the elaboration will fail if the holes containing types don’t
get solved through unification.

Quote the term Quotation is the first step that differs between terms and
patterns. In both cases, the term resulting from elaboration is quoted, with
the names that were assigned to antiquotations left unquoted. However,
if the term being elaborated is a pattern, then some aspects of the term
are not quoted faithfully. See Section 7.3.3 for more information.

Elaborate the antiquotations The quoted term from the previous step
is ready to be spliced into the original hole. What remains is to solve the
variables introduced for antiquotations in the previous step. This is done
by first introducing each name as a hole expecting a quoted term, and then
elaborating them into their holes using the standard elaborator ℰ J⋅K.

68 Chapter 7. Quasiquotation

ℰ J`(𝑒)K = do (𝑒′, ⃗𝑎) ← extractAntiquotes 𝑒 (1)
st ← get (2)
newProof T
claim T ∶ ⋆

⃗anything (names ⃗𝑎)
ℰ J𝑒′K
qt ← term
check qt
put st

⃗claim (names ⃗𝑎 ∶ ⃗TT) (3a)
𝑟 ← reify qt ⃗𝑎
fill 𝑟
solve

⃗elabAntiquote ⃗𝑎 (4)

Figure 7.2: Elaboration of quasiquotations.

Formal Description

This four-step elaboration procedure is described in Figure 7.2, in Brady’s
notation [Bra13b] as described in Chapter 4. The individual tactics that
correspond to each of the steps 1–4 above are numbered. Antiquotations
are replaced in the first line of the tactic script, using the previously-des-
cribed operation ExtractAntiquotes (1). Then, the ordinary state monad
operations get and put are used to save and restore the original proof
state. The region (2) bracketed by these operations corresponds to step
2 above — namely, elaboration of the quoted term in the global context,
which is achieved using a fresh proof state introduced by newProof. Ini-
tially, the goal of the new proof is an unbound variable, but this variable
is then bound as a hole expecting a type using the claim meta-operation.
The quoted term is provided with hole bindings for each of the fresh
antiquotation names by the anything meta-operation. Then, the quoted
term is elaborated into the main hole. If this process is successful, it will
result in the hole T being filled out with a concrete type as well. The result
of elaboration is saved in the variable qt, and then type checked one final
time with Check to ensure that no errors occurred.

After the original proof state is restored with put, the actual quoting
must be performed and the antiquotations must be spliced into the re-

7.3. Elaborating Quasiquotations 69

sult (3). Each antiquotation name is now established as a hole of type
Term, the datatype representing reflected terms, because the elaborated
form must be a quotation. Now that the holes for the antiquotations are
established, it is possible to insert the reflected term into the initial hole.
The operation reify is invoked, which quotes the term, leaving references
to the antiquotation variables intact as references to the just-introduced
holes. This quoted term is then filled in as a guess, and solve is used to
dispatch the proof obligation.

Finally, the antiquotations can be elaborated (4). This is done by focus-
ing on their holes and elaborating the corresponding term into that hole.
In the above script, this is represented by the tactic elabAntiquote, which
can be defined as follows:

elabAntiquote (𝑛, 𝑡) = do focus 𝑛
ℰ J𝑡K

A specific elaboration procedure for antiquotations is not necessary, be-
cause programs with antiquotations outside of quasiquotations are re-
jected prior to elaboration.

7.3.2 Elaborating With Goal Types

Elaborating a quasiquotation with an explicit goal type is a straightfor-
ward extension of the procedure in the previous section. After introduc-
ing a hole for the type of the term that will be elaborated prior to the actual
quotation, the goal type is elaborated into this hole. Because this is occur-
ring immediately after the establishment of a fresh proof state, names in
the goal type will be resolved in the global scope, as intended.

The formal procedure is largely identical to that shown in Figure 7.2,
with only the small addition shown in Figure 7.3. Thus, the lines imme-
diately before and immediately after are included to show where the ad-
ditions have occurred. This seemingly-simple change has far-reaching ef-
fects, because type information is now available to the subsequent elabo-
ration of e′. This type information can, for instance, enable implicit argu-
ments to be solved due to unification constraints induced by the elabora-
tion of t.

7.3.3 Elaborating Quasiquotation Patterns

Quasiquotations can also be used as patterns. Recall that the operation
𝒫 J⋅K is a variation of ℰ J⋅K that is used on the left-hand side of definitions

70 Chapter 7. Quasiquotation

ℰ J`(𝑒 ∶ 𝑡)K = do
⋮

claim T ∶ ⋆
focus T
ℰ J𝑡K

⃗anything (names ⃗𝑎)
⋮

Figure 7.3: Elaborating quasiquotations with goal types (new steps highlighted).

in order to elaborate patterns. The primary difference is that 𝒫 J⋅K does
not fail when the elaborated term contains unknown variables. Instead, it
inserts pattern variable bindings for these.

It is tempting, then, to simply use the pattern elaborator in the recur-
sive elaboration clauses of the quasiquote elaboration procedures. How-
ever, this would not work. reify would simply quote these new pattern
variables, leading to terms that contain explicitly quoted fresh pattern
variables. Pattern elaboration must instead invoke ordinary expression
elaboration when generating the term to be quoted, but then use pattern
elaboration for the antiquotations.

For practical reasons, pattern elaboration must use a specialized reflec-
tion procedure reifyP that introduces some universal patterns in strate-
gic places. These universal patterns serve two purposes: preventing un-
necessary pattern-matching of subterms that are uniquely determined by
other subterms, and preventing elaborator-chosen features such as hid-
den names from making patterns too specific. In Idris, it is especially im-
portant to reduce the size of the subterms being scrutinized when possi-
ble, because the coverage checker can take significant time when check-
ing deeply nested patterns. In particular, the constructor for references to
global names contains three subterms:

• whether the name is a function, constructor or type constructor;

• the fully-qualified name; and

• a full type annotation.

The first and last of these subterms are, however, uniquely determined
by the second, and they exist to simplify the type checker. Thus, when

7.3. Elaborating Quasiquotations 71

ℰ J`(𝑒)K = do (𝑒′, ⃗𝑎) ← extractAntiquotes 𝑒 (1)
st ← get (2)
newProof T
claim T ∶ ⋆

⃗anything (names ⃗𝑎)
ℰ J𝑒′K
qt ← term
check qt
put st

⃗claim (names ⃗𝑎 ∶ ⃗TT) (3b)
𝑟 ← reifyP qt ⃗𝑎
fill 𝑟
solve

⃗elabAntiquoteP ⃗𝑎 (4)

Figure 7.4: Elaborating quasiquote patterns (changes highlighted).

pattern matching, there is no need to check them. Additionally, the elab-
orator will from time to time invent a fresh name or universe variable.
For example, ordinary non-dependent function types are represented in
TT as dependent functions types in which the bound name is not free in
the type on the right hand side. In these cases, it does not actually matter
which name was chosen, because the name does not appear in the term,
and matching against the specific name chosen by the elaborator could
mean that the pattern `(Nat -> Nat) did not match the quoted input term
`(Nat -> Nat).

There is no solid theoretical reason for the selection of these particular
heuristics. However, they do work well in practice, and users who want
to control the details of pattern matching can always override these de-
faults with an explicit antiquotation. For instance, one could use the pat-
tern `(Nat -> ~(Bind (UN "x") (Pi `(Nat) _) `(Nat))) to match all non-
dependent functions in Nat -> Nat -> Nat whose second argument hap-
pens to be named precisely x.

Figure 7.4 demonstrates the formal procedure for elaboration of qua-
siquotation patterns. This procedure uses two variations on previously-
seen meta-operations: reifyP, like reify, is a traversal of the resulting tree
structure that implements step 4 above, and elabAntiquoteP is defined

72 Chapter 7. Quasiquotation

as follows:
elabAntiquoteP (𝑛, 𝑡) = do focus 𝑛

𝒫 J𝑡K
The modifications necessary to elaborate a quasiquotation pattern with a
goal type are identical to the non-pattern case.

7.3.4 Nested Quasiquotations

While nested quasiquotations are a useful idiom in Lisp macro program-
ming, it is unclear to what extent they are useful in the context of metapro-
gramming Idris. It is not particularly common to build a complex infras-
tructure around the reflected term datatype itself, as reflection is primar-
ily used to escape the confines of the type theory. However, in the in-
terest of not introducing arbitrary restrictions, the elaboration procedure
described in this section can be straightforwardly extended to support
nested quasiquotations.

Only one modification is needed: the extractAntiquotes operation
needs to keep track of the current quotation level. Crossing a quotation in-
crements the quotation level, and crossing an antiquotation decrements it.
Only antiquotations corresponding to the outermost quotation, i.e., only
antiquotations at quotation level zero, are extracted. The remainder of the
elaboration procedure is unchanged.

In the real implementation, of course, quasiquote elaboration with or
without goal types and in pattern mode or expression mode is handled by
one code path, with conditionals expressing the four possibilities. They
were presented as four separate procedures above for reasons of clarity.

7.4 Polymorphic Quotations

In the past, the Raw datatype was not particularly useful for reflection in
Idris. Since the paper upon which this chapter is based was written, specif-
ically with the advent of the reflected elaborator (see Chapter 9), Raw has
become much more prominent. Thus, it became necessary to extend qua-
siquotation to work for both TT and Raw. The procedure outlined in this
chapter was straightforwardly adapted by introducing additional reflec-
tion and pattern reflection operations.

Figure 7.5 exhibits the elaboration procedure for polymorphic quota-
tions; the pattern elaborator and goal types are added in the same manner

7.5. Quoted Names 73

ℰ J`(𝑒)K = do g ← goal
(𝑒′, ⃗𝑎) ← extractAntiquotes 𝑒 (1)
st ← get (2)
newProof T
claim T ∶ ⋆

⃗anything (names ⃗𝑎)
ℰ J𝑒′K
qt ← term
check qt
put st

⃗claim (names ⃗𝑎 ∶ g) (3a)
𝑟 ← try(reifyTT qt ⃗𝑎)

(reifyRaw qt ⃗𝑎)
fill 𝑟
solve

⃗elabAntiquote ⃗𝑎 (4)

Figure 7.5: Polymorphic quasiquotation (changes highlighted).

as they were in monomorphic quasiquotations. At the beginning of the
quotation process, the elaboration goal type is remembered. Then, when
holes are established for the fresh names that were inserted, the elabora-
tion goal type is used for the type of the hole. Finally, the two quotation
procedures are applied wrapped in the try tactical. Here, reify𝑡 repre-
sents a function that reflects its argument into term representation 𝑡. This
assures that the first success will be used, which means that quotations
will default to TT when no type constraints are available. To avoid default-
ing, it would also be possible to explicitly check that the goal type was
either TT or Raw, and employ the appropriate reflection procedure.

7.5 Quoted Names

The contents of this section are new developments since the IFL 2014 pa-
per.

The complex structure of the name datatype in Idris has many of the
same disadvantages as working with the TT or Raw datatypes. Names are

74 Chapter 7. Quasiquotation

difficult to recognize when reading code. Additionally, because reflected
names are not required to point at anything in particular, it is easy to for-
get to modify a metaprogram when the namespace structure of a project
changes. Just as it is useful for reflected terms to be well-typed and to
share the high-level syntax of Idris, it is useful for reflected names to be
valid references to existing names and to share the syntax of Idris names.

Thus, we extended Idris with two additional syntactic forms, inspired
by Agda’s quote syntax:

𝑒, 𝑡 ∶∶= …
∣ `{𝑛 } (resolved quotation of name 𝑛)
∣ `{{𝑛 }} (unresolved quotation of name 𝑛)

The first, a quotation of the name 𝑛, resolves 𝑛 in the current scope dur-
ing elaboration and fills in a reflected version of the same name. If 𝑛 is
a bound variable, then the quotation is filled with a reflected version of
𝑛. Otherwise, it is looked up in the global context, within which it must
be unambiguous. To resolve ambiguities, the user must provide sufficient
namespace information to disambiguate the name, as is standard in Idris.
The second new syntactic form, unresolved quotation, simply elaborates
to a reflection of the parser’s notion of the name. This is convenient when
constructing new names during a reflective procedure, or when using
elaborator reflection interactively.

7.6 Future Extensions

There are a number of interesting and useful extensions to the quasiquo-
tation mechanism described in this chapter that have not yet been imple-
mented.

Idris’s reflection mechanism is presently entirely untyped. Although
the typing discipline of quasiquotations imposes a certain amount of san-
ity on metaprograms that use reflection, it is still not possible to use this
quotation mechanism to implement automation libraries in the style of
MTac [Zil+13] or VeriML [SS10] in which the type of a proof tactic guar-
antees that if the tactic succeeds, then it has solved a goal of a particular
type. Decorating quotations with phantom types that can only originate
from the elaborator might be useful for providing safer proof automa-
tion tools. We have developed a prototype implementation of this mech-
anism on a separate Idris branch, but it has not yet been merged into the

7.6. Future Extensions 75

mainline Idris compiler. A more robust form of typed quotation, in which
the structure of the reflected term itself has the desired typing properties,
may also be an interesting extension. For example, quotation could be
used to automate the production of Devriese and Piessens’s term repre-
sentations [DP13]. However, representing type theory in itself is still a
very demanding exercise, and it would be difficult to make it practical for
programming.

Najd et al.’s quoted domain-specific languages [Naj+15], described in
Section 2.3, provide a greater degree of flexibility when repurposing a
host language’s syntax. However, these quoted DSLs need access to high-
level Idris or Idris− syntax, as they may impose different meanings on
syntactic forms. For example, the quoted language may need to have rules
for case expressions that cannot be recovered from the top-level pattern-
matching definitions produced by the Idris elaborator. Implementing a
QDSL in the manner described in Najd et al.’s technical report would
also require the typed quasiquotations described in the previous para-
graph. Additionally, given some syntactic sugar, this form of quotation
could be used to implement a full-fledged macro system in the tradition
of Lisp, and it could allow experimentation with new elaborator features
if combined with a metacircular reflected elaborator using the reflected
elaboration operators described in Chapter 9.

Presently, quotations apply only to terms. However, quoted defini-
tions could also be very useful for implementing domain-specific lang-
uages, code generation tools, generic programming systems, and other
alternative interpretations of code. In particular, when pattern matching
against the definition of a datatype in the reflected elaborator, it would
be very convenient to be able to use the concrete syntax instead of the
reflected syntax described in Chapter 5.

The restriction that quoted terms are elaborated in the global environ-
ment is too strict for some applications. It would be convenient to expand
them to support descriptions of a local environment. This could be accom-
plished by elaborating both terms and goal types in a context in which
abstract hole bindings have been established for the free variables. These
hole bindings would be forgotten when the elaboration state is restored.

Chapter 8

Error Reflection

This chapter is based on an unpublished paper [Chr14a], an earlier ver-
sion of which was presented at the Symposium on Trends in Functional
Programming in 2014.

8.1 Introduction

Much of the discourse about domain-specific languages (DSLs) has tra-
ditionally focused on allowing domain experts, rather than professional
software developers, to describe non-trivial software in a notation that
is close to their mental models. However, implementing a programming
language is difficult and expensive. In an EDSL, an already-existing gen-
eral-purpose language is used to express the domain-specific language,
which may not require as large of an investment of time as a stand-alone
implementation due to re-use of existing development tools. In recent
years, another category of embedded domain-specific languages has come
to the fore: EDSLs intended for professional software developers that mask
some of the complexity of a particular area of programming. Examples of
this category include Chafi et al.’s work with heterogeneous parallel com-
putation [Cha+10a], the Repa array language [Kel+10], and the Feldspar
language for digital signal processing [Axe+10].

Embedding DSLs in a host language with an expressive type system al-
lows domain-specific type systems to be encoded in the host type system.
This has a number of benefits: the DSL type system inherits properties
from the host language such as type soundness and decidability of type
checking, the DSL developers do not need to implement complicated fea-

78 Chapter 8. Error Reflection

tures such as type inference, and existing development tools can support
the embedded language’s type system without further extension or cus-
tomization. The Achilles’ heel of this approach is the convoluted error
messages that can result from non-trivial encodings: they may bear little
resemblance to the embedded surface syntax and they may be long and
stereotypical. The utility of a type error that no user can understand is
questionable at best.

One of the design goals of Idris is that it should be a good host for
embedded languages. Examples of languages that have been embedded
in Idris include Brady’s algebraic effects language [Bra13c; Bra14] and
his earlier language for resource-safe programming [BH12]. Dependent
types have the potential to be a host for very expressive embedded type
systems. Additionally, embedded languages have the potential to hide
the complexity of full dependent types, allowing programmers to write
code as if they were working in a simpler language, while automation
procedures take care of the proofs behind the scenes. If this goal is to be
achieved in practice, then the problem of error messages must be solved.

For example, take an embedded language for querying relational data-
bases. This query language might require that projections from tuples se-
lect columns that actually exist in the schema. The mechanism described
in this chapter can transform this generic error message:

Can’t solve goal
HasCol [("name", STRING), ("age", INT)] "naime" STRING

into this domain-specific error message:

The schema [("name", STRING), ("age", INT)] does not contain the
column "naime" with type STRING

8.2 Error Reflection

The primary contribution of this chapter is an extension to the Idris lan-
guage, called error reflection, that expands the scope of the reflection mech-
anism used for proof automation to encompass error reporting. Error re-
flection enables developers to rewrite the compile-time error messages
that result from complex APIs, particularly embedded domain-specific
languages, so that the error messages can be consistent with the ideas and
metaphors of the API or DSL. We present several examples of error mes-
sages that can be improved using error reflection. Though the technique

8.2. Error Reflection 79

is implemented in Idris, there is reason to believe that it would be appli-
cable to languages without dependent types. Error reflection is available
in versions of Idris numbered 0.9.13 and higher.

8.2.1 Motivating Example

As a very simple motivating example, consider a tiny fragment of a data-
base interface library that contains schemas, tuples, and relations, along
with Cartesian products of relations and projection of individual elements
from tuples. Following Oury and Swierstra [OS08], we define a simple
universe of datatypes that will be supported in the database. For the sake
of simplicity, the embedded query language will support only integers
and strings:

data Ty = INT | STRING

interpTy : Ty -> Type
interpTy INT = Int
interpTy STRING = String

In this representation, schemas are simply lists of pairs of attribute names
and codes from the universe. To avoid getting sidetracked, no uniqueness
condition is imposed on attribute names.

Schema : Type
Schema = List (String, Ty)

Tuples are represented by the family Row, which is indexed by schemas:

data Row : Schema -> Type where
Nil : Row []
(::) : interpTy t -> Row s -> Row ((c,t) :: s)

In Idris, naming the constructors Nil and (::) allows list literal syntax to
be used to construct a Row. The following listing puts these pieces together,
showing a concrete schema and tuple:

r : Row [("name", STRING), ("age", INT)]
r = ["Jane", 43]

Projections from a tuple are slightly more complicated: the type of the
result depends on the schema, and the system should disallow projec-
tions of columns that do not exist in the schema. This check should occur

80 Chapter 8. Error Reflection

statically, so that a query that purports to be defined against a particular
schema is in fact a query against that schema. A convenient way to achieve
this is to define a type of witnesses that a particular attribute is present in
a schema, and then arrange for Idris to construct these witnesses on de-
mand. The type HasCol 𝑠 𝑐 𝑡 represents that schema 𝑠 contains a column
named 𝑐 with type 𝑡, using the standard technique.

data HasCol : Schema -> String -> Ty -> Type where
Here : HasCol ((c, t) :: s) c t
There : HasCol s c t -> HasCol ((c', t') :: s) c t

Note that it is impossible to show that the empty schema contains any
attribute at all:

instance Uninhabited (HasCol [] c t) where
uninhabited Here impossible
uninhabited (There _) impossible

Projection can now be defined by recursion over the structure of these
witnesses:

project : (c : String) -> (t : Ty) -> (r : Row s) ->
(ok : HasCol s c t) -> interpTy t

project c t [] ok = absurd ok
project c t (x :: xs) Here = x
project c t (x :: xs) (There ok') = project c t xs ok'

In practice, however, we cannot expect users of our embedded query
language to construct a HasCol every time they want to project an element
from a tuple. Thus, we redefine ok to be an implicit argument that should
be inferred by the compiler. The auto keyword causes Idris to construct
the HasCol witness using its built-in proof search.

project : (c : String) -> (r : Row s) ->
{auto ok : HasCol s c t} -> interpTy t

project c [] {ok = ok} = absurd ok
project c (x :: xs) {ok = Here} = x
project c (x :: xs) {ok = (There ok')} = project c xs {ok=ok'}

A relation is a collection of tuples with the same schema. Here, a rela-
tion containing 𝑛 tuples with schema 𝑠 is represented by a Vect 𝑛 (Row 𝑠).

8.2. Error Reflection 81

Like SQL and unlike the relational algebra, this encoding allows for du-
plicate tuples. The Cartesian product, written here with the (*) operator,
is the concatenation of each row from one relation with each row from an-
other. Just like projection, the Cartesian product has a side condition: it
is only defined for tuples whose collection of attribute names are disjoint.
This enables attribute names to be used for projection later. As before, we
represent this side condition using an automatically-solved implicit proof
of disjointness.

(*) : Vect n (Row s1) -> Vect m (Row s2) ->
{auto prf : Disjoint s1 s2} ->
Vect (n * m) (Row (s1 ++ s2))

(*) [] ys = []
(*) (r::rs) ys {prf = prf} = map (r++) ys ++ ((*) rs ys {prf=prf})

Ideally, users of an embedded database language would be able to
work entirely within the abstractions of the database language, rather
than needing to worry about the details of proof automation and implicit
arguments. However, when they make mistakes, the error messages are
expressed in terms of the underlying implementation of the static seman-
tics. The purpose of this work is to improve on this situation.

8.2.2 Error Messages

The relation humans describes people and their ages, while housing lists the
size of two apartments:

humans : Vect 2 (Row [("name", STRING), ("age", INT)])
humans = [["Alice", 37]

, ["Bob", 23]
]

housing : Vect 2 (Row [("floorspace", INT)])
housing = [[48]

, [72]
]

The first column of the first row in humans can be extracted using the
project function, but if a user misspells a column name, then the resulting
error message can be difficult to decode:

82 Chapter 8. Error Reflection

> project "name" (head humans)
"Alice" : String

>
::::::::
project

:::::::::
"naime"

:::::::
(head

:::::::::
humans)

Can't solve goal
HasCol [("name", STRING), ("age", INT)] "naime" t

Likewise, the Cartesian product of humans and housing contains the ex-
pected four tuples. However, trying to take the product of humans and
itself results in an error that reflects details of the DSL implementation
rather than domain concepts:

> humans * housing
[["Alice", 37, 48],
["Alice", 37, 72],
["Bob", 23, 48],
["Bob", 23, 72]] : Vect 4

(Row [("name", STRING),
("age", INT),
("floorspace", INT)])

>
:::::::
humans

::
*
::::::::
humans

Can't solve goal
Disjoint [("name", STRING), ("age", INT)]

[("name", STRING), ("age", INT)]

Careful naming of the required proof objects can sometimes lead to these
errors being somewhat understandable, as above. However, good error
messages should do more than simply provide a vague hint about why a
problem arose. They should explain the problem, and do so in an acces-
sible and straightforward manner.

8.2.3 Reflecting Errors

To solve this problem, we extended Idris’s reflection mechanism to encom-
pass error messages. Now, the standard library contains a datatype cor-
responding to the compiler’s own internal representation of errors, and
Idris functions can insert themselves into the error reporting mechanism
to rewrite errors before they are shown to users. In some sense, these er-
ror handlers resemble exception handlers, except they can only raise a

8.2. Error Reflection 83

new exception, rather than recovering from the error and continuing the
program.

An error handler is a partial function from a representation Err of er-
ror messages to a rewritten error report. Accordingly, we might assign
them the type Err -> Maybe String. However, error messages have more
structure than a String can express. Often, they will include Idris terms,
or have a hierarchical structure. Error reports that result from reflection
should be able to use the facilities of the compiler that already exist for
rendering this structure. Thus, Idris defines a type ErrorReportPart that
represents the various sorts of content that can appear in an error report.

data ErrorReportPart = TextPart String
| NamePart TTName
| TermPart TT
| RawPart Raw
| SubReport (List ErrorReportPart)

The constructor TextPart represents a string containing error explanations,
NamePart contains a reflected Idris name to be highlighted, TermPart con-
tains a reflected, fully-elaborated Idris term to be pretty-printed, RawPart
contains a putative TT term that has not yet been type checked, and a
SubReport contains further information to be rendered as additional ex-
planation in an indented block.

The representation of errors Err is simply a subset of the constructors
of the compiler’s internal datatype that represents errors. The most impor-
tant of these errors are conversion failures, unification errors, and proof
search failures. It is a subset because error reflection should not rewrite
errors that have already been rewritten, and because some types of er-
rors exist primarily to keep track of things like source location, which
rewritten errors should not lie about. Additionally, the compiler contains
a number of unstructured error messages that only arise in specialized
circumstances. Due to this lack of structure, it does not make sense to
pattern-match these errors.

Error handlers map reflected errors to lists of the previously-described
error report parts. Because not every handler will handle every error, er-
ror handlers should have the type Err -> Maybe String. To avoid uninten-
tional rewriting of errors, the keyword %error_handler is used to mark
functions with this type as error handlers.

The function dbErr in Figure 8.1 maps proof search errors in the above
code to domain-specific error messages. It relies on an auxiliary func-

84 Chapter 8. Error Reflection

tion getHasColFields, which simply extracts the three parameters of the
reflected representation of a HasCol proof. Note that the error handler dis-
tinguishes between cases in which the elaborator has already discovered
a value for the type of the column by checking for bound variables first.
This easy interleaving of quotation and low-level syntax is a key advan-
tage of quasiquote patterns.

As we saw in Section 8.2.1, the following definition quite obviously
fails to satisfy the condition that the arguments of the Cartesian product
of relations should be disjoint:

test3 : Vect 4 (Row [("name", STRING), ("age", INT),
("name", STRING), ("age", INT)])

test3 =
:::::::
humans

::
*

::::::::
humans

Now, however, the resulting error message refers specifically to the notion
of disjointness:

When checking right hand side of test3:
The schemas [("name", STRING), ("age", INT)] and
[("name", STRING), ("age", INT)] are not disjoint.

Additionally, misspelling a column name when performing a projection
provides a clear error. The definition:

floorspace : Int
floorspace =

:::::::
project

::::::::::::::::
"flodorspace"

::::
INT

::::::::
(index

:::
2

::::::::
(humans

:::
*

:::::::::::
housing))

yields the error:

When elaborating right hand side of floorspace:
The schema [("name", STRING), ("age", INT)] ++ [("floorspace", INT)]
does not contain the column "flodorspace" with type INT

which quite straightforwardly explains the problem. Because the reported
error contains semantically interesting information, users can addition-
ally use the Idris IDE features described in Chapter 6 to do things like
normalizing subterms of error messages in-place. The above error mes-
sage can be converted to the following error message with just a few clicks
of the mouse:

When elaborating right hand side of floorspace:
The schema [("name", STRING), ("age", INT), ("floorspace", INT)]
does not contain the column "flodorspace" with type INT

8.3. Applications 85

%error_handler
total
dbErr : Err -> Maybe (List ErrorReportPart)
dbErr (CantSolveGoal `(Disjoint ~s1 ~s2) _) =

Just [TextPart "The schemas", TermPart s1
, TextPart "and", TermPart s2
, TextPart "are not disjoint."]

dbErr (CantSolveGoal `(HasCol ~s ~c ~(P Bound _ _)) _) =
Just [TextPart "The schema", TermPart s

, TextPart "does not contain the column"
, TermPart c
]

dbErr (CantSolveGoal `(HasCol ~s ~c ~t) _) =
Just [TextPart "The schema", TermPart s

, TextPart "does not contain the column"
, TermPart c, TextPart "with type"
, TermPart t
]

dbErr _ = Nothing

Figure 8.1: An error handler for the embedded database language. Quasiquotations are used to destruc-
ture the terms inside of reflected errors.

8.3 Applications

While error reflection was a useful technique for improving the usability
of our fragment of a domain-specific language, we should hope that the
technique is more broadly applicable. This section exhibits specific appli-
cations for error reflection in already-existing Idris code.

8.3.1 Beginner-Friendly Arithmetic

The code described in this section was added to the Idris standard library
by Edwin Brady. Here, we describe it as an illuminating example.

Like Haskell, Idris has a Num type class. An instance of Num 𝑎 explains
how integer literals should be converted to elements of 𝑎 as well as how
to perform operations such as addition. However, new users without a
background in Haskell can be confused by the error that results when an
integer literal is used improperly:

86 Chapter 8. Error Reflection

foo : Int -> Int
foo x = if

:::
17 then x else 42

Can't resolve type class Num Bool

Suddenly the number of concepts that they need to know has grown
to include both type classes and the default desugaring of integer literals.
Thus, the Idris prelude contains the following error handler:

%error_handler
num_error : Err -> Maybe (List ErrorReportPart)
num_error (CantResolve `(Num ~x)) =

Just [TermPart x
, TextPart "is not a numeric type"
]

num_error _ = Nothing

Now, the above error is rewritten to:

Bool is not a numeric type

which refers to the error actually committed by the user, without refer-
ence to the language mechanisms by which the error is noticed. Advanced
users can toggle the display of the original error message in connection
with the rewritten one.

8.3.2 Integer Literals for Finite Set Elements

A typical example of dependent types are the finite sets. Given a natu-
ral number 𝑛, the type Fin 𝑛 has exactly 𝑛 canonical elements. In other
words, Fin 0 is uninhabited, Fin 1 has precisely one element, Fin 2 has
precisely two elements, and so forth. The Fin family is often used for
bounds-checked indexing into data structures. Thus, it can be convenient
to use integer literals for them.

Unlike Haskell, type-driven ad hoc overloading is used to disambig-
uate the application of fromInteger that integer literals desugar to. This
means that types need not have instances of the Num type class in order
to support integer literals — they need only define an overloading of the
name fromInteger. The Idris standard library contains the following defi-
nition:

8.3. Applications 87

fromInteger : (x : Integer) ->
{default ItIsJust
prf : (IsJust (integerToFin x n))} -> Fin n

fromInteger {n} x {prf} with (integerToFin x n)
fromInteger {n} x {prf = ItIsJust} | Just y = y

Here, IsJust : Maybe a -> Type is inhabited when its argument is built
with the Just constructor. The default ItIsJust modification to the im-
plicit argument causes Idris to use the constructor of these proofs to solve
it. The function integerToFin simply returns the corresponding Fin if pos-
sible, or Nothing otherwise. This combination, then, statically ensures that
Fin literals are within their bounds.

Unfortunately, the error message that results from this arrangement is
somewhat opaque. The simple definition:

f : Fin 2
f =

::
3

results in a quite involved error, in which otherwise-hidden details of the
implementation take center stage:

When checking argument prf to function fromInteger:
Type mismatch between

IsJust (Just x) (Type of ItIsJust)
and

IsJust (integerToFin 3 2) (Expected type)

Specifically:
Type mismatch between

Just x
and

Nothing

Fortunately, it is straightforward to define an error handler that will rewrite
this error to something understandable. The error handler is demonstrated
in Figure 8.2. In the presence of this error handler, the above definition of
f results in a much more explanatory error message:

When checking argument prf to function fromInteger:
When using 3 as a literal for a Fin 2

Could not show that 3 is less than 2

88 Chapter 8. Error Reflection

By further dissecting the argument n to integerToFin, the message can
be further improved to distinguish between the cases where the literal is
most definitely out of bounds and the cases where it simply cannot be
statically demonstrated.

%error_handler
finTooBig : Err -> Maybe (List ErrorReportPart)
finTooBig (CantUnify x tm `(IsJust (integerToFin ~n ~m)) err xs y)

= Just [TextPart "When using" , TermPart n
, TextPart "as a literal for a"
, TermPart `(Fin ~m)
, SubReport [TextPart "Could not show that"

, TermPart n
, TextPart "is less than"
, TermPart m
]

]
finTooBig _ = Nothing

Figure 8.2: An error handler for finite set literals.

8.3.3 Algebraic Effects

Idris includes a library for handling side effects compositionally, with-
out explicitly using monad transformers. Briefly, Eff 𝑎 [𝐸, 𝐹 𝑟, 𝐺] is
the type of an effectful computation that uses effects 𝐸, 𝐹, and 𝐺, yielding
a value in 𝑎. Additionally, the effect 𝐹 has some resource 𝑟, which might
be a file handle or a state. Effectful operations can, but need not, change
the type of the resource.

When one operation in Eff calls another, the library searches for a
proof that the called operation’s effects are a subset of the calling oper-
ation’s effects. This ensures that all effects that might be performed are
visible in the caller’s type, but it does not require that the called opera-
tion have the exact same effect collection.

As an example of the effects library, consider a program that reads a
name from standard input, and then greets the user by name. Its type
signature lists that it uses STDIO, which is the representation of console
input and output, as well as that it will not return an interesting value.

8.3. Applications 89

hello : Eff () [STDIO]
hello = do n <- getStr

putStrLn ("Hello, " ++ n)

If this program is rewritten to read the name from a file, the type of hello
must be updated. If it is not, as in the following program, then Idris will
report a proof search error.

getName : Eff (Maybe String) [FILE_IO ()]
getName = do ok <- open "test" Read

case ok of
False => return Nothing
True => do name <- readLine

close
return (Just name)

hello : Eff () [STDIO]
hello = do Just n <- getName

| Nothing => putStrLn "Can't read file"
putStrLn ("Hello, " ++ n)

The error that occurs is quite long, because some details of the implemen-
tation of Eff are visible. Buried deep within is the fact that it is unable to
implicitly find a value with the type:

SubList [FILE_IO ())] [STDIO]

While a great deal of thought has gone into making this error as readable
as possible, the effect system is just a library, and it must juggle concerns
that include generating efficient Idris code, automating proof obligations
such as this one, and having a convenient syntax. The compiler can’t pos-
sibly provide more useful suggestions.

An error handler can rewrite this to something more informative. Be-
cause the term that we care about is surrounded by other information,
the first step is to extract the invocation of SubList for which proof search
failed. This can be done through straightforward recursion over the TT
representation, using a quasiquotation pattern to match the instance that
is of interest. The actual error handler checks whether it is the result of
a proof search failure. If so, it examines the failed type for SubList and
constructs a friendlier error message.

90 Chapter 8. Error Reflection

findSubList : TT -> Maybe (TT, TT)
findSubList `(SubList {a=~_} ~l ~r) = Just (l, r)
findSubList (Bind n b tm) = findSubList tm
findSubList (App tm tm') = findSubList tm <|> findSubList tm'
findSubList _ = Nothing

%error_handler
sublist_err : Err -> Maybe (List ErrorReportPart)
sublist_err (CantSolveGoal tm xs) =

do (required, found) <- findSubList tm
return [TextPart "Attempted to use an operation with effects"

, TermPart required
, TextPart "in a context where only"
, TermPart found
, TextPart "are available."
]

sublist_err _ = Nothing

With this error handler, the message becomes:

Attempted to use an operation with effects [FILE_IO ()] in a context
where only [STDIO] are available.

This message helps the user focus on the part of the error that was relevant
and provides a much better hint as to the significance of the relationship
between these lists.

8.4 Argument Error Handlers

The error reflection mechanism described thus far suffers from a major
shortcoming: the risk of spurious matches. For example, it is perfectly
reasonable to expect that a library other than the effects library might use
the SubList family and its associated proof search procedure. However,
the error handler described in Section 8.3.3 will also be used to rewrite
error messages resulting from this new library, giving blatantly mislead-
ing results. The risk of false positives arises whenever a single type is used
for multiple purposes, and the global nature of error handlers means that
importing a new library can break the error messages for some other im-
ported library if they share a mutual dependency.

8.5. Implementation Considerations 91

The problem could be solved by copying and pasting the definitions
of the types in question to a separate namespace, and being careful about
matching namespaces in error handlers. However, copying and pasting is
not typically regarded as a good code re-use practice. Even worse, users
may receive a very confusing message if a library developer is not aware
that a particular type is used in more than one location. Developers of
error handlers need not be the original authors of a library.

The chance of false positives can be reduced by narrowing the scope
of error handlers. Thus, Idris supports attaching them to specific formal
parameters of specific functions. A comma-separated list of error handler
names h1, ..., hn is attached to parameter x of the function, constructor,
or type constructor f using the pragma:

%error_handlers f x h1, ..., hn

When an error results from the elaboration of a term that occurs as an
argument to f in the position indicated by x, the error handlers h1, ...,
hnwill be preferred over global error handlers.

8.5 Implementation Considerations

While error reflection is implemented in Idris, there are no fundamental
considerations that prevent it from being implemented in languages with-
out dependent types. Nevertheless, a practical implementation requires
a certain amount of compiler infrastructure that may not be available in
every programming language.

Compile Time Evaluation Executing error handlers requires that the
compiler be able to evaluate expressions while type checking. Thus, an
interpreter for the language being type-checked should be available, and
the type checker should have some facility for using it. This is available by
definition in a dependently typed language, but many other languages or
external static analysis tools will also be able to do this.

Ensuring Termination Running arbitrary code at compile time has the
potential to cause the compiler to not terminate. Because dependently
typed languages do this as a matter of course, they have evolved sophisti-
cated techniques for ensuring that only terminating terms are evaluated
at compile time.

92 Chapter 8. Error Reflection

Idris checks all programs for termination, but potentially non-term-
inating terms are simply not reduced by the type checker. To preserve
the termination of the type checking process, error handlers that do not
pass the termination checker are rejected. If other languages adopt error
reflection, they should also implement a termination checker, or handle
non-termination through some other mechanism, such as a timeout or
through QuickCheck-style [CH00] property-based testing.

In some sense, the usability argument for mandatory termination is
a bit of a red herring. A termination checker does not guarantee speedy
execution, which means that timeouts and performance testing may be
useful even in the presence of termination checking.

Reflection Facilities In order to support error reflection, the reflection
capabilities of a host language should, as a minimum, support reification
of both types and terms. In a dependently typed language like Idris, this is
trivial, as there is no syntactic distinction between types and other terms,
so a single mechanism suffices. In other systems, support for reflecting
both syntactic categories can vary.

Some systems, such as Template Haskell [SJ02], support both straight-
forwardly. Some other languages, such as F# [Sym06], have one system
for quoting terms and another for representing types (namely, .NET re-
flection). Scala’s quasiquotations [SBO13] support both expressions and
types, and could be a promising facility for implementing error reflection.

Error Origin Tracking In a dependently-typed language in which error
handlers can be attached to specific function arguments, it is not sufficient
to install error handlers as exception handlers in a traversal of the abstract
syntax tree. This is because Idris’s unifier accumulates a collection of un-
solved unification problems, which may become solvable by a mix of later
unifications and reductions. At the end of elaboration, the compiler must
check that no open unification problems remain.

Unification errors in particular may first be signaled far from their
source. In Idris, this is addressed by annotating every error with a stack
of surrounding applications, and then using this information to decide
which error handlers are eligible to rewrite the error. Other languages
that seek to implement error reflection should adopt a similar method for
ensuring that the correct handlers are associated with errors, based on
these errors’ origin in the source code.

8.6. Related Work 93

8.6 Related Work

While the difficulties in interpreting error messages in embedded DSLs is
well-known, there are comparatively few systems that attempt to address
it. Here, we do not describe work on improving type errors in general,
as the focus is on embedded languages and other situations where error
messages could not possibly be improved by the authors of the program-
ming language.

Heeren et al. [HHS03] present a system for constraint-based type infer-
ence in the context of the Helium language that aims at solving the same
problems as Idris error reflection. Their system is defined at a higher level
of abstraction, supporting the definition of custom typing rules that are
then mechanically checked for consistency with the host language’s type
system. Additionally, their system supports defining “sibling functions”
that are suggested as alternatives in the case of type errors. Finally, their
system allows the order of type inference constraints to be controlled by li-
brary authors, making it easier to locate error messages at the real source
of errors, rather than elsewhere in a library. Some of these techniques
would be applicable in a language like Idris. In particular, sibling func-
tions seem to be quite promising as a potential feature. However, there is
no obvious way to apply these techniques to proof search failures, and
checking that custom typing rules are a consequence of Idris’s typing
rules could require arbitrarily complicated computation due to depen-
dent types. Additionally, the lack of global type inference in dependently-
typed languages drastically reduces the utility of controlling the order in
which constraints are checked.

The Scala-virtualized compiler described by Rompf et al. [Rom+13]
supports an @implicitNotFound annotation that allows a custom error mes-
sage to be displayed when the compiler cannot resolve an implicit argu-
ment. These new error messages can contain references to type variables
in the declaration that they apply to. This feature can be seen as a special
case of error reflection in which only one kind of error can be rewritten,
with somewhat less ability to destructure the types involved.

8.7 Conclusion and Future Work

As demonstrated, the error reflection facility enables conversion of unin-
formative error messages to informative, domain-specific error messages.

94 Chapter 8. Error Reflection

This is useful both for embedded languages and for ordinary libraries.
Quasiquote patterns enable a convenient syntax for destructuring terms
that occur in reflected errors and reconstructing informative messages
that contain terms.

However, there are still practical considerations to be worked out. Per-
haps the most serious is the strong coupling between error handlers and
the specific terms that occur in error messages. Both compiler updates
and relatively small changes in an embedded language can cause fairly
large changes in error messages. To make rewriting reflected errors more
robust and flexible, it may be convenient to be able to use tools other than
pattern matching to define error handlers. For example, it might be pos-
sible to develop a sort of query language for reflected terms that allows
convenient and expressive extraction of sub-terms.

It can also be difficult to mentally map the displayed error message to
the constructor that represents it in the error type. This could be solved
by integrating error reflection more closely into Idris’s IDE support. For
instance, an interactive command to view the reflected form of an error
that is displayed on screen might make it easier to determine the structure
to be rewritten.

Chapter 9

Elaborator Reflection

In this chapter, we present elaborator reflection, in which the underlying
tactics of the Idris elaborator are reified into a type of computations that
are accessible from Idris itself. With the reflected elaborator, it becomes
possible to re-use Idris’s elaboration infrastructure to explain the mean-
ing of embedded languages in terms of TT, allowing the language imple-
menter to piggyback on Idris and re-use implementations of features such
as higher-order unification and the built-in proof search.

Elaborator reflection is useful for more than just embedded languages.
The ability to programmatically generate TT terms and definitions based
on a rich API for static reflection means that the reflected elaborator can
be used similarly to Template Haskell [SJ02]. As befits its basis in the tech-
niques of interactive proof assistants, the reflected elaborator can also be
used to implement proof automation in a manner reminiscent of Coq’s
LTac [Del00].

Template Haskell [SJ02] has proven to be a widely applicable tool for
solving a variety of problems, including generating boilerplate code, pro-
totyping higher-level generic programming systems [NJ04], generating
bindings to foreign interfaces in a manner reminiscent of F#’s type pro-
viders [Sym+12], and much more. Unlike C++’s template metaprogram-
ming, Template Haskell programs are written in ordinary Haskell rather
than a special-purpose sub-language. In Template Haskell, the compiler
supports a type of compile-time side effects, such as generating unique
names, as well as access to meta-information, such as reflected definitions
of datatypes. Generated terms or declarations can be spliced into ordinary
programs.

Imperative tactic scripts in languages such as LTac [Del00] support the

96 Chapter 9. Elaborator Reflection

incremental construction of proof terms, with commands for manipulat-
ing proof goals, introducing intermediate lemmas, automating the solu-
tion of simple goals en masse, and composing these procedures into large-
scale solvers. In LTac and related tactic languages, the proof assistant al-
lows the execution of tactic scripts to affect a global proof state, which
contains things like the goals that remain to be proven, unification con-
straints, and intermediate proof terms. Additionally, scripts have access
to control effects that include failure and recovery. Because the tactic lan-
guage is not part of the trusted kernel of the proof assistant, tactic scripts
need not follow the usual termination restrictions. When the tactic script
has completed its task, the resulting term is type checked and saved.

Like Template Haskell, Idris’s elaborator reflection mechanism uses
Idris itself to implement compile-time metaprogramming. However, Tem-
plate Haskell’s Q monad is quite parsimonious, offering few effects and no
additional control structures. Elaborator reflection is more expressive: it
exposes the tactic-based proof assistant interface of Brady’s [Bra13b] elab-
oration mechanism, allowing metaprograms written in Idris to make use
of the same kinds of side effects as LTac scripts while still remaining in
the same language.

9.1 Introductory Examples

To give a sense of the “flavor” of reflected elaboration in Idris, this section
presents two quite different examples of its use: implementation of a small
typed embedded language with a foreign-function interface (FFI) to Idris
code and a simple proof search tactic.

9.1.1 A Simple Embedded Language

The reflected elaborator can be used to compile a DSL to TT. Indeed, it
is powerful enough to elaborate at least a large subset of Idris’s term lan-
guage itself. This section presents a very simple language that is compiled
to TT. The language in question has no static type information; thus, the
elaboration process must also perform type inference.

The language is given by the datatype in Figure 9.1. The only construc-
tor of this datatype that is not completely standard is FFI. Its argument,
TTName, is a reflected Idris name. The intention is that this allows an Idris
definition to be called directly, which enables additional primitive opera-

9.1. Introductory Examples 97

data Lang : Nat -> Type where
V : Fin n -> Lang n
Ap : Lang n -> Lang n -> Lang n
Lam : Lang (S n) -> Lang n
CstI : Integer -> Lang n
FFI : TTName -> Lang n

Figure 9.1: A simple language datatype, where the index represents the number of free variables.

tions that are not expressible in the language to be added without chang-
ing either the AST or the definition of the elaborator.

An example function in this language that adds two numbers follows:

exampleFun : Lang 0
exampleFun = Lam $ Lam $

Ap (Ap (FFI `{prim__addBigInt})
(V 0))

(V 1)

Recall that the syntax `{𝑛} means the quotation of the name 𝑛, once re-
solved to an actual name in scope. See Section 7.5 for details about these
quoted names. In this case, it is a reference to Idris’s built-in primitive
addition on the arbitrarily large integer type.

When producing terms in TT, we will need concrete names to repre-
sent the de Bruijn indices in the Lang names. Because a term in Lang 𝑘
can access 𝑘 free variables, we can represent the corresponding TT names
with a Vect 𝑘 TTName. Thus, the elaboration procedure has type:

elabLang : Vect k TTName -> Lang k -> Elab ()

This means that, given a name for each de Bruijn index, it will produce a
term through elaboration effects.

The reflected elaboration context, Elab, corresponds to the elaboration
mechanism described in Chapter 4. At the beginning of elaboration, there
will be a hole in focus whose type is determined by the elaboration of the
surrounding high-level Idris. Throughout the course of elaboration, recur-
sive calls will always be made with their hole in focus, and the elaborator
for each syntactic production of Lang is expected to solve its correspond-
ing hole.

98 Chapter 9. Elaborator Reflection

The first case, variables, is solved by looking up the explicit name in
the context and placing it in the hole:

elabLang ctxt (V i) = do fill (Var (index i ctxt))
solve

Here, fill corresponds to fill (see page 29), Var is the constructor for re-
flected named variable references (in the datatype Raw described in Chap-
ter 5), and index looks up a particular value from a Vect. The Idris op-
erator solve corresponds to the solve tactic, which substitutes the guess
introduced by fill throughout its scope.

The second case, integer constants, is solved by filling the hole with
the Idris integer inside the constructor:

elabLang ctxt (CstI x) = do fill (quote x)
solve

Here, quote is an overloaded operation that converts an Idris value into a
corresponding reflected value. It is a method of the Quotable type class.

To elaborate a function, it is necessary to do slightly more work. First,
a unique name is generated for the bound argument variable, to prevent
variable capture. Then, the binding is introduced using intro, which will
fail if the current hole does not have a function type. Finally, the body is
elaborated into the new hole underneath the binder.

elabLang ctxt (Lam x) =
do n <- gensym "argument"

attack
intro n
elabLang (n :: ctxt) x
solve

When elaborating an application, it becomes necessary to use the uni-
fier in the Idris elaborator to discover all of the involved types. Four holes
are created: two for the types, one for the function itself, and one for its
argument. Here, mkHole is a derived tactic that generates a unique name
and claims it with a particular type. Then, the current hole is filled with
an application, and the function and argument holes are used for the elab-
oration of the function and argument, respectively.

This process is represented as follows:

9.1. Introductory Examples 99

elabLang ctxt (Ap x y) =
do t1 <- mkHole `(Type)

t2 <- mkHole `(Type)
fun <- mkHole `(~(Var t1) -> ~(Var t2))
arg <- mkHole (Var t1)
fill (RApp (Var fun) (Var arg))
solve
focus fun; elabLang ctxt x
focus arg; elabLang ctxt y

In the final case, the FFI constructor, the underlying Idris name is
placed directly in the hole, which is then solved. If the name does not
refer to a definition with the correct type, elaboration will halt with an
error.

elabLang ctxt (FFI n) = do fill (Var n)
solve

Now, this elaborator can be used to compile our example DSL function
to a real Idris function:

compiled : Integer -> Integer -> Integer
compiled = %runElab (elabLang [] exampleFun)

Evaluating compiled yields:

\argument1 => \argument2 => prim__addBigInt argument2 argument1

which is precisely the function that we would expect.

9.1.2 Simple Proof Search

As another example of elaborator reflection, we develop an automated
procedure for solving certain simple proof goals. Although the Idris elab-
orator was not initially intended as a framework for proof automation,
its similarities to traditional tactic languages allow it to be used in this
manner as well. Following the initial development, we then extend it to
perform a more general proof search.

Figure 9.2 contains the complete text of the initial solver. First, it queries
the system to discover the type of the hole into which elaboration is occur-
ring. Then, quasiquotation patterns are used to determine how to solve
the hole. The type annotations in these quasiquotes are necessary due to

100 Chapter 9. Elaborator Reflection

auto : Elab ()
auto =

do g <- goalType
case g of

`(() : Type) =>
do fill `(() : ())

solve
`((~A, ~B) : Type) =>

do aH <- mkHole A
bH <- mkHole B
fill `(MkPair {A=~A} {B=~B} ~(Var aH) ~(Var bH))
solve
focus aH; auto
focus bH; auto

`(Either ~a ~b) =>
left a b <|> right a b

_ =>
fail [NamePart `{auto}

, TextPart "can't solve the goal"
, RawPart g
]

where
left : Raw -> Raw -> Elab ()
left a b = do aH <- mkHole a

fill `(Left {a=~a} {b=~b} ~(Var aH))
solve
focus aH; auto

right : Raw -> Raw -> Elab ()
right a b = do bH <- mkHole b

fill `(Right {a=~a} {b=~b} ~(Var bH))
solve
focus bH; auto

Figure 9.2: A simple proof search, implemented using elaborator reflection.

9.1. Introductory Examples 101

the syntactic punning. If the goal is the unit type, the hole is filled with its
trivial constructor. If the goal is a product type, new holes are generated
for the left and right projections of the resulting pair. Then, auto is applied
in each of these holes. If the goal is a coproduct type, the failure-recovery
combinator<|> is applied, first attempting a procedure that would use the
left constructor and then one that would use the right. Finally, in the case
that none of these cases match, the fail tactic is used to deliver a friendly
error message.

The ability to fail directly avoids the need for kludges like the error
reporting mechanism in Kokke and Swierstra’s proof search [KS15], in
which blatantly type-incorrect values that happen to contain messages for
users are substituted in contexts that are incorrect. Kokke and Swierstra’s
approach is to use a datatype like:

data Failure : String -> Type where
Fail : (msg : String) -> Failure msg

If Fail msg is used to solve a goal, a compiler notification can be produced
that contains the error message, such as:

Failure "proof search failure" !=< ⊥ of type Set

Even though it can report reasonable error messages, this approach to
proof automation is unsatisfactory. Every time that we would like auto to
support a new datatype, it must be extended with an additional pattern-
match case. Then, each constructor of the datatype must be attempted (in
a fashion similar to the Either case above), and each argument to these
constructors must be supplied (in a fashion similar to the product type
above). By using the datatype reflection capabilities of Elab, it is possible
to retrieve sufficient information about its constructors to generalize this
technique.

The first step in this generalization is to define two helper functions:
headName and inHole, which respectively extract the name at the head of a
term and execute a tactic in the context of a particular hole, if it is in fact
a hole. The operator inHole is useful because some holes will be solved
automatically according to unification constraints, and focusing on a non-
existent hole would be an error.

To apply a constructor, we use applyCtor, which applies a construc-
tor to the appropriate number of fresh holes, then solves each of them
using some tactic that it receives as an argument. Iteration over the argu-
ment holes is performed using for_, which is a standard Idris idiom that

102 Chapter 9. Elaborator Reflection

headName : Raw -> Maybe TTName
headName (Var n) = Just n
headName (RApp tm _) = headName tm
headName _ = Nothing

inHole : TTName -> Elab () -> Elab ()
inHole h tac = do hs <- getHoles

if h `elem` hs
then do focus h; tac
else return ()

applyCtor : TTName -> Nat -> Elab () -> Elab ()
applyCtor cn argCount tac =

do holes <- apply (Var cn) (replicate argCount True)
solve
for_ holes $ \h =>
inHole h tac

Figure 9.3: Helpers used in the proof search example.

is described in Appendix B. headName, inHole, and applyCtor are defined
in Figure 9.3.

Finally, we have the tools to construct a general-purpose depth-first
constructor-based proof search. To ensure termination, the search takes
a bound on the depth of recursion. Additionally, the tactic takes a list of
inductive families to consider and a fallback tactic for when the goal is
not one of these families. When the goal type is the application of a name
that is in the list of family names to consider, the reflected form of the def-
inition is looked up and the constructors field is projected from it. Then,
each reified constructor is converted into a computation that will apply it
and continue searching recursively, and the first succeeding computation
is selected using choice.

Not only is this new code much more general, it is also much shorter
than the procedure in Figure 9.2. The behavior of that example can be
recovered (modulo a limit on search depth) with the definition auto in
Figure 9.4.

9.2. Elaborator Reflection, Defined 103

byConstructors : Nat -> List TTName -> Elab () -> Elab ()
byConstructors Z _ _ =
fail [TextPart "Search failed because the max depth was reached."]

byConstructors (S k) tns tac =
do case headName !goalType of

Nothing => tac
Just n =>

if not (n `elem` tns)
then tac
else do ctors <- constructors <$> lookupDatatypeExact n

choice (map (\(cn, args, _) =>
applyCtor cn

(length args)
(byConstructors k tns tac))

ctors)

auto : Elab ()
auto = byConstructors 1000 [`{Unit}, `{Pair}, `{Either}] nope
where

nope : Elab ()
nope = do g <- snd <$> getGoal

fail [NamePart `{auto}
, TextPart "can’t solve the goal"
, TermPart g
]

Figure 9.4: The proof automation example.

9.2 Elaborator Reflection, Defined

After the previous section’s examples of how elaborator reflection can be
used, we now turn to the definition and description of the feature itself.
Elaborator reflection extends the high-level Idris language with one new
syntactic form, one new type constructor, and a collection of primitive op-
erations. The new syntax extends desugared Idris (that is, both Idris and
Idris−) with one additional production, the splicing operator %runElab:

𝑒, 𝑡 ∶∶= …
∣ %runElab 𝑒 (splice of 𝑒’s result)

The new type constructor, called Elab, is analogous to Template Haskell’s
Q monad [SJ02]. Computations in Elab provide side effects such as a fresh

104 Chapter 9. Elaborator Reflection

ℰ J%runElab 𝑒K = do claim s ∶ Elab Unit
focus s
attack
ℰ J𝑒K
𝑥 ← guess
solve
𝒳 J𝑥K
solve

Figure 9.5: Elaborating %runElab.

name supply and access to metadata about the global context.
The elaboration rule for the new Idris construct %runElab merely del-

egates to a new meta-operation 𝒳 J⋅K which is responsible for executing
reflected elaboration scripts. We must first capture the result of elaborat-
ing the script without otherwise disturbing the elaboration process, then
execute the resulting TT term. This process is illustrated in Figure 9.5.

The first step is to elaborate the tactic script. Because the term elabo-
rator ℰ J⋅K assumes that there is already an in-focus hole with the correct
type, claim is used to create the hole and focus is used to bring it into
focus. However, it is too early to elaborate the script. At the end of the
elaboration of each syntactic form, ℰ J⋅K solves the hole into which it is
elaborating its argument. Because there are no references to the hole s,
this will result in the hole being eliminated along with the results of elab-
oration. Inserting a reference to the hole, e.g. in a let binding, is not an
acceptable solution, because that would cause the reference to persist into
the result of elaboration. The solution is to use attack from Section 4.5 to
create a hole that the current hole refers to as a guess. Once the result of
elaboration is present as a guess in s, it can be retrieved using the meta-
operation guess. After capturing the result, s can be eliminated with solve
and the results executed with 𝒳 J⋅K.

In the remainder of this section, we define 𝒳 J⋅K for the operations of
the reflected elaborator. The high-level descriptions of elaborator opera-
tions are provided in Idris syntax, but when detailed semantics are neces-
sary, they are given in TT, as the elaboration of Elab operations is straight-
forward. Just like type theory, elaborator reflection is open-ended — it
can be freely extended. These future extensions can be implemented by

9.2. Elaborator Reflection, Defined 105

extending TT with new inhabitants of Elab and providing them with a
semantics in 𝒳 J⋅K.
9.2.1 Control Structures

To enable computations to be sequenced and to depend on one another,
Elab provides primitive pure and >>= operators, which are sufficient to
implement Functor, Applicative, and Monad. This enables do-notation and
idiom brackets to be used to compose computations. Additionally, the
primitives <|> and fail enable the implementation of Alternative Elab
as a left-biased error handler.

𝒳 JpureElab 𝑎 𝑣K = return 𝑣

𝒳 J>>=Elab 𝑎 𝑏 𝑣 𝑘K = do 𝑥 ← 𝒳 J𝑣K
𝒳 J𝑘 𝑥K

𝒳 JfailElab 𝑎 𝑚K = fail 𝑚
𝒳 J<|>Elab 𝑎 𝑙 𝑟K = try (𝒳 J𝑙K) (𝒳 J𝑟K)

9.2.2 Queries

Just like Template Haskell, reflected elaboration supports queries about
the contents of the global context. Additionally, there are queries about
the current local elaboration context.

• getEnv : Elab (List (TTName, Binder TT)) reflects the lexical envi-
ronment surrounding the focused goal, providing a list of name-
binder pairs.

• goal : Elab (TTName, TT)provides the name and type of the focused
hole. This type may refer to variables in the local environment.

• holes : Elab (List TTName) provides the hole queue as an Idris list.

• guess : Elab TT extracts the guess from the current hole, if one is
available. If the focus is not on a guess, it fails.

• lookupTy : TTName -> Elab (List (TTName, NameType, TT)) resolves
a name in the global context, returning a list of triples. Each element
consists of a fully-resolved name, an indication of whether it refers

106 Chapter 9. Elaborator Reflection

Name Type Page
pure a -> Elab a 105
>>= Elab a -> (a -> Elab b) -> Elab b 105
<|> Elab a -> Elab a -> Elab a 105
fail List ErrorReportPart -> Elab a 105
getEnv Elab (List (TTName, Binder TT)) 105
goal Elab (TTName, TT) 105
holes Elab (List TTName) 105
guess Elab (Maybe TT) 105
lookupTy TTName -> Elab (List (TTName, NameType, TT)) 105
lookupDatatype TTName -> Elab (List Datatype) 107
fixity String -> Elab Fixity 107
solve Elab () 107
fill Raw -> Elab () 107
apply Raw -> List Bool -> Elab (List TTName) 107
matchApply Raw -> List Bool -> Elab (List TTName) 108
focus TTName -> Elab () 108
unfocus TTName -> Elab () 108
attack Elab () 108
claim TTName -> Raw -> Elab () 108
intro Maybe TTName -> Elab () 108
forall TTName -> Raw -> Elab () 108
letbind TTName -> Raw -> Raw -> Elab () 108
patBind TTName -> Elab () 108
patVar TTName -> Elab () 109
converts List (TTName, Binder TT) -> TT -> TT -> Elab () 109
normalise (List (TTName, Binder TT)) -> TT -> Elab TT 109
whnf TT -> Elab TT 109
check List (TTName, Binder TT) -> Raw -> Elab (TT, TT) 109
compute Elab () 109
rewriteWith Raw -> Elab () 110
sourceLocation Elab SourceLocation 110
currentNamespace Elab (List String) 110
gensym String -> Elab TTName 110
resolveTC TTName -> Elab () 110
search' Int -> List TTName -> Elab () 110
debugMessage List ErrorReportPart -> Elab a 111
metavar TTName -> Elab () 111
declareType TyDecl -> Elab () 111
defineFunction FunDefn -> Elab () 111
addInstance TTName -> TTName -> Elab () 111
runElab Raw -> Elab () -> Elab (TT, TT) 111

Figure 9.6: Operations in Elaborator Reflection.

9.2. Elaborator Reflection, Defined 107

to a data constructor, a type constructor, or a function, and its elab-
orated type.

• lookupDatatype : TTName -> Elab (List Datatype) resolves a name
and returns reflected definitions for all inductive families whose
names are overloadings of the input.

• fixity : String -> Elab Fixity discovers the declared fixity for an
operator, allowing this to be used by code generators when display-
ing infix constructors.

These queries will not be defined formally with the 𝒳 J⋅K notation be-
cause each would simply consist of a new meta-operation that retrieves
the corresponding information from the global environment and reifies
it to the datatypes described in Chapter 5.

9.2.3 Modifying the Focused Hole

Some operations modify the focused hole. These are:

• solve : Elab () is the solve operation that substitutes a guess in the
scope of a hole binding. It is an error when the focus is not on a
guess.

• fill : Raw -> Elab () places a reflected term into the focused hole,
creating a guess. It is an error if there is not a hole at the focus.

• apply : Raw -> List Bool-> Elab (List TTName) takes as arguments
a term and an argument specifier. For each intended argument, it
produces a new hole, and marks the hole as solvable by unification
if the Boolean value is true, and it fills the focused hole with the ap-
plication of the term to these new holes. It returns a list of the names
of the holes into which the arguments should be placed. Some of
these holes may have been solved automatically by unification con-
straints.

This operation is somewhat complicated, and it does not appear in
Brady’s description of the Idris metalanguage [Bra13b]. However,
this operation is exceedingly useful: under the hood, it is used to
implement the solving of implicit arguments. Implementing it cor-
rectly using simpler primitives would be possible, yet tedious and

108 Chapter 9. Elaborator Reflection

error-prone, involving the replication of much of the internal com-
piler infrastructure. In particular, it would need to re-implement the
typing rules for dependent functions, substituting each hole for its
argument name in the remainder of the type of the operator being
applied.

• matchApply : Raw -> List Bool -> Elab (List TTName) is equivalent
to apply, except it uses one-directional matching instead of unifica-
tion to automatically solve holes.

• focus : TTName -> Elab () moves the focus to some specified hole.
The operation fails if the provided name is not a hole.

• unfocus : TTName -> Elab () causes the hole named by its argument
to be moved to the end of the hole queue. The operation fails if the
provided name is not a hole.

• attack : Elab () implements the attack meta-operation described
in Section 4.5.

9.2.4 Adding Binders

Some meta-operations introduce binders around the focused hole. In some
cases, it is necessary to use attackfirst to prevent improper scoping. These
cases are noted as “requiring an immediate hole”.

• claim : TTName -> Raw -> Elab () introduces a new hole binding,
given a name and type.

• intro : Maybe TTName -> Elab () introduces a lambda around the
current hole, which should have a function type. This operation re-
quires an immediate hole.

• forall : TTName -> Raw -> Elab () wraps the current hole in a func-
tion type binding the given name with the given type. This opera-
tion requires an immediate hole.

• letbind : TTName -> Raw -> Raw -> Elab () wraps the current hole
in a let binder with a given type annotation and value.

9.2. Elaborator Reflection, Defined 109

• patBind : TTName -> Elab () is the analogue of intro for pattern vari-
able binders. If the present hole’s type indicates that a pattern vari-
able binder is expected, this tactic will introduce it with the given
name.

• patVar : TTName -> Elab () converts the current hole to a pattern
variable with the provided name. This changes both the proof term
and the goal type, wrapping them in the appropriate pattern vari-
able binder and pattern variable type, and replaces the hole with a
reference to the pattern variable.

9.2.5 Computation

Some of the operators in Elab support invoking the evaluator. While terms
provided by the users are typically expected to be in the Raw format, these
operations expect their arguments to be in TT. This is because they require
that their arguments are well-typed, and therefore expect that the user has
already type checked them.

• converts : List (TTName, Binder TT) -> TT -> TT -> Elab () checks
that two type-checked terms are convertible in the environment. That
is, that they have 𝛼-equivalent normal forms.

• normalise : (List (TTName, Binder TT)) -> TT -> Elab TT computes
the normal form of a term relative to an environment.

• whnf : TT -> Elab TT computes the weak head normal form of a
closed term.

9.2.6 Invoking the Type Checker

• check : List (TTName, Binder TT) -> Raw -> Elab (TT, TT) invokes
the type checker to convert a term to its fully annotated representa-
tion. The first projection of the result is the type checked term and
the second projection is its type.

9.2.7 Goals

• compute : Elab () normalizes the present goal.

110 Chapter 9. Elaborator Reflection

• rewriteWith : Raw -> Elab () rewrites the goal using an equality
proof. While this could be implemented as a derived tactic that in-
vokes the substitution operator replace, using the built-in imple-
mentation ensures consistency with the rewrite … in … syntax of
Idris. This syntax is described in more detail in Appendix B.

9.2.8 Source Contexts

• sourceLocation : Elab SourceLocation returns the source location of
the invocation site of the tactic script, which can be useful for report-
ing error messages.

• currentNamespace : Elab (List String) returns the default lexically-
declared namespace at the invocation site of the tactic script, which
allows definitions produced from tactic scripts to easily conform to
the namespacing rules of ordinary Idris code.

9.2.9 Names

• gensym : String -> Elab TTName corresponds to the same operator
in Template Haskell [SJ02], which is itself based on the venerable
operator from Lisp. It produces a unique unqualified name based
on the hint provided. This can be used à la Lisp to avoid variable
capture.

9.2.10 Proof Search

The Idris compiler contains proof automation features that are used to
fill out function arguments using various strategies. Elaborator reflection
makes these features available to Idris code.

• resolveTC : TTName -> Elab () solves the current goal using type
class resolution, or fails if this is not possible. The argument is a
name to exclude from the search, which is used to prevent direct
self-recursion when constructing an instance dictionary.

• search' : Int -> List TTName -> Elab () attempts to solve the cur-
rent goal using Idris’s built-in proof search. The first argument is a
bound on the search depth and the second argument is a list of ad-
ditional hints to use, beyond datatype constructors. A simpler oper-
ator, search : Elab (), can be defined as search = search' 1000 [].

9.3. Implementation Considerations 111

9.2.11 Development Tools

• debugMessage : List ErrorReportPart -> Elab ahalts the elaborator,
dumping the current elaborator state in a readable format. Addition-
ally, a pretty-printed message is rendered using the error message
printing facilities described in Chapter 8.

• metavar : TTName -> Elab () fills the current hole with a top-level
Idris metavariable hole, obligating the user to solve it in some other
manner. This allows elaborator scripts to be composed with other
means of proof automation.

9.2.12 Global Definitions

• declareType : TyDecl -> Elab () adds a new type declaration to the
global context. The TyDecl record type has fields for the name of the
declaration, its arguments’ names, types, plicity (see page 41), and
erasure status, and return type.

• defineFunction : FunDefn -> Elab () defines the pattern matching
and reduction behavior of a declared function. The FunDefn type,
which was defined in Figure 5.7, contains a list of pairs of pattern-
matching terms.

• addInstance : TTName -> TTName -> Elab () adds a previously-dec-
lared function to the type class instance search database.

9.2.13 Recursive Invocations

• runElab : Raw -> Elab () -> Elab (TT, TT) constructs a term using
another elaboration script. The input is the goal type and the script;
the output is the resulting term and its fully-explicit type. This is
useful for producing terms to be used in helper definitions.

These represent the lowest level of tactics. In addition to these, a num-
ber of derived tactics have proven useful. These are discussed in Section 9.4.

9.3 Implementation Considerations

One concern when defining a reflection system on top of a dependent
type theory is to what extent the type system should be used to reason

112 Chapter 9. Elaborator Reflection

about metaprograms. Quite intentionally, our reflection library uses only
simple datatypes, ruling out complicated dependent types at the border
between Idris and the reflected elaborator. This is because dependently
typed representations of programming languages are typically best suited
to one particular mode of use. For example, if the reflected term datatypes
ensured that all name references were well-scoped, then users of the li-
brary would need to maintain that invariant at all times. If the type of
terms ensured that all reflected terms were well-typed, then users of the
library would need to employ complex machinery in the style of Daniels-
son [Dan07], Chapman [Cha09], and Devriese and Piessens [DP13] at all
times. While this might improve our confidence that metaprograms only
generate meaningful programs, the resulting complexity would also re-
duce the number of people who can use the library. Additionally, one of
the main reasons to have a tactic language or another metaprogramming
system on top of type theory is precisely to allow an escape from the inter-
nal reasoning of the system in situations where it is inconvenient, while
still producing checkable results.

Our elaborator reflection API is far closer to the idealized tactic lan-
guage described by Brady [Bra13b] than it is to the real, underlying Idris
elaborator. For instance, the real elaborator provides explicit, precise con-
trol over unification constraints, while they are implicit in the interface
to the apply tactic in the reflected elaborator. This is intentional: we have
striven to attain a good balance between ease of use and expressive power,
and directly annotating constraints is not necessary to achieve any task
that has yet been attempted with the reflected elaborator.

Reflecting the elaborator has, in many ways, pushed the current im-
plementation of Idris’s expression elaborator to its limits. The expression
elaborator runs in a restricted context in which the only effects that are
available are elaboration effects. This has been extended with support for
modifications to the global Idris compiler state, such as when defining
new functions through reflection, but the present design prohibits many
useful features and imposes limitations on the effects that can be encoded.

Additionally, operations such as termination checking rely on opera-
tors that are not available in the expression elaborator context. Presently,
the expression elaborator accumulates a list of instructions for the defini-
tion elaborator. These instructions include definitions of helper functions
to be elaborated as well as information about global state changes per-
formed by reflected elaborator scripts.

While many of these could be moved from the definition elaborator to

9.4. The Pruviloj Library 113

the term elaborator, or made sufficiently polymorphic to be able to run
in either context, it might be better to enrich the control structures of the
term elaborator to make it interruptable and resumable. This would al-
low breakpoint-style debugging of reflected elaboration scripts as well as
the ability to elaborate helper functions immediately, rather than waiting
until after the term elaborator had completed. Additionally, it would pro-
vide a clean means of escaping to a context in which more effects, such
as logging or running IO actions, are available, without complicating the
set of effects typically available in the term elaborator.

9.4 The Pruviloj Library

This section describes Pruviloj, a library of derived tactics built from the
primitive tactics of Section 9.2. These tactics are used in later develop-
ments. Additionally, seeing how they are defined in terms of the prim-
itive tactics may help build intuition for the process of reflected elabo-
ration. This library of tactics, inspired by the standard Coq tactics, is far
from the only mode of use for Elab. It can also be used to implement other
reflection or tactic systems, such as the type-safe tactic language MTac or
Agda’s non-effectful reflection system.

The first two operations in Pruviloj are not specific to the reflected
elaborator. They could be used in other situations, and may eventually
be moved to elsewhere in the Idris libraries. The first, ignore, causes the
return value of an effectful operation to be ignored. The second, skip, is
included for compatibility with Idris’s previous tactic language. It does
nothing and has no effects.

ignore : Functor f => f a -> f ()
ignore x = map (const ()) x

skip : Applicative f => f ()
skip = pure ()

The next utility in Pruviloj is a means of converting TT to equivalent Raw
terms. Because malformed terms may cause scope errors, this operation
may fail. Therefore, it runs in Elab. This operation is called forget and has
type TT -> Elab Raw.

A common task when working with Elab is to destructure the cur-
rent goal, using parts of it in a solution. However, the goal has been type

114 Chapter 9. Elaborator Reflection

checked, so it is provided in TT, while operators like fill expect Raw. Ad-
ditionally, the primitive getGoal returns the name of the goal along with
its type, but the name is often irrelevant. The goalType tactic encapsulates
this common pattern:

goalType : Elab Raw
goalType = do g <- getGoal

forget (snd g)

The hypothesis tactic solves the current goal using one of the binders
in scope, if applicable. First, it retrieves the names of all local binders in
scope at the current hole. Then, it attempts to solve the hole using each
bound variable in turn. The function choiceMap is a fusion of map and
choice, which is described in Appendix B.

hypothesis : Elab ()
hypothesis =

do hyps <- map fst <$> getEnv
flip choiceMap hyps $ \n =>

do fill (Var n)
solve

The newHole tactic captures the common pattern of generating a fresh
name and introducing it as a hole:

newHole : (hint : String) -> (ty : Raw) -> Elab TTName
newHole hint ty =

do hn <- gensym hint
claim hn ty
return hn

The exact tactic immediately solves the current hole with a complete
term:

exact : (tm : Raw) -> Elab ()
exact tm = do fill tm

solve

The intros tactic introduces names so long as the goal type is a func-
tion. It calculates the bound name for the lambda from the one in the func-
tion type. It uses the helper nameFrom, which returns a fresh name that is
similar to its argument.

9.4. The Pruviloj Library 115

intros : Elab (List TTName)
intros = do g <- snd <$> getGoal

go g
where go : TT -> Elab (List TTName)

go (Bind n (Pi _ _) body) =
do n' <- nameFrom n

intro n'
(n' ::) <$> go body

go _ = return []

Because the reflected elaborator maintains a queue of open holes rather
than a tree-structured collection of goals and subgoals, some operations
return a list containing the names of the holes that they introduced for
later processing. However, solving one of these holes may cause others
to be solved by unification, so many tactic scripts need to check whether
a hole still exists before focusing on it. Thus, Pruviloj includes the inHole
tactical that was discussed in Section 9.1.2, which runs a tactic in a hole if
that hole still exists.

The equiv tactic replaces the current goal with a new goal that is con-
vertible with the old goal. It does this by creating a new hole with the
desired type and immediately filling the old hole with the new one, trig-
gering a conversion check.

equiv : (newGoal : Raw) -> Elab TTName
equiv newGoal =

do h <- gensym "goal"
claim h newGoal
fill (Var h); solve
focus h
return h

One difficulty of using a hole for elaboration is that holes disappear
when solved if there is no reference to them. On the other hand, explic-
itly setting up the infrastructure to keep them around is tedious. Pruviloj
provides a tactic remember that produces a hole whose result is let-bound
in the current scope. When this hole is solved, its value can still be refer-
enced by the name given to remember. After remember has run, the new hole
is in focus, ready to receive the results of elaboration.

116 Chapter 9. Elaborator Reflection

remember : (n : TTName) -> (ty : Raw) -> Elab TTName
remember n ty =

do todo <- gensym "rememberThis"
claim todo ty
letbind n ty (Var todo)
focus todo
return todo

The Pruviloj tactical repeatUntilFail corresponds to the repeat tactic
in Coq. It repeats some tactic until a failure, succeeding if the argument
tactic succeeds at least once.

repeatUntilFail : Elab () -> Elab ()
repeatUntilFail tac =

do tac
repeatUntilFail tac <|> return ()

Type inference, in the style described in Section 4.4.3, is supported by
the Infer datatype and the inferType tactical. This tactical runs the tactic
that it receives as an argument in a context in which the focused hole has
another hole as its type, the expectation being that the hole for the type
will be solved by unification constraints. It returns the resulting term and
type.

data Infer : Type where
MkInfer : (a : Type) -> a -> Infer

inferType : (tac : Elab ()) -> Elab (TT, TT)
inferType tac =

case fst !(runElab `(Infer) (do startInfer; tac)) of
`(MkInfer ~ty ~tm) => return (tm, ty)
_ => fail [TextPart "Type inference failure"]

where
startInfer : Elab ()
startInfer =

do [_, tmH] <- apply (Var `{MkInfer}) [True, False]
| _ => fail [TextPart "Type inference failure"]

solve
focus tmH

9.5. Other Applications 117

The andThen tactical supports using one tactic to attempt to make prog-
ress in all subgoals introduced by another tactic. The tactic that introduces
subgoals should follow the convention of returning a list of holes. The
overall result is a list containing the results of the tactics that were run in
each hole.

andThen : (first : Elab (List TTName)) ->
(after : Elab a) -> Elab (List a)

andThen first after =
do hs <- first

catMaybes <$> for hs (flip inHole after)

Finally, the core of Pruviloj provides the unproduct tactic. This tactic
takes a reflected term that represents a nested structure of tuples as its
argument and let-binds all of its projections, recursively. This can be used
together with hypothesis to automate the extraction of results from helper
tactics that compute more than is strictly necessary.

In addition to these base tactics, Pruviloj defines some tactics that gen-
erate helper functions if necessary. These include induction, which uses
the eliminator generation described in Section 9.5.1 to produce induction
principles, and then returns a list with a hole for each constructor. This tac-
tic automatically abstracts the current goal over the scrutinee, using that
as the motive for the eliminator. Pruviloj also defines tactics that generate
and appeal to proofs of constructor injectivity and disjointness, respec-
tively called injective and disjoint.

9.5 Other Applications

9.5.1 Deriving Eliminators

Elaborator reflection can be used to replace part of the language imple-
mentation, written in Haskell, with Idris library code. Not only does this
enable more rapid experimentation with new features, as the entire com-
piler does not need to be re-built and patches to the compiler do not need
to be maintained separately — the resulting drop in complexity makes it
easier to maintain the compiler. Additionally, Idris’s dependent types and
DSL support can be used to assist the development of these extensions. In
this section, we outline the replacement of one of the Idris compiler’s fea-
tures with equivalent features written in Idris itself.

118 Chapter 9. Elaborator Reflection

Idris supports a rich variety of datatype definitions, including induc-
tive and inductive-recursive families [Dyb94; Dyb00]. To support an in-
duction tactic in Idris’s previous tactic language, the compiler contains
support for deriving induction principles for some of these types. In par-
ticular, it can derive induction principles for inductive families defined
according to Dybjer’s 1994 scheme [Dyb94]. The code that implements
this feature is around 250 lines of dense, complex Haskell.

With the reflected elaborator, it is possible to define eliminator deriva-
tion as part of the Pruviloj library, and use it to implement an induction
tactic. While this is useful for automating the construction of proofs as
well as some programs, it is also a good test case for a programming tool
because an induction principle is the most general operation that can be
performed on a datatype. If it is possible to derive an eliminator, then we
should expect to be able to derive any other program of interest. Further-
more, it is sometimes easier to simply apply the eliminator than it is to
generate a fresh helper function during some other code generation task.

The approach that we have taken to derive the eliminator is:

• Convert the representation of type constructors to one in which the
internal names have been made unique. The arguments are already
tagged by their role as either parameters or indices.

• Convert the representation of data constructors into one in which
the arguments representing parameters to the family have the same
names as in the type constructor, and all other fields have been made
unique.

• Compute the type of the eliminator, and declare it.

• For each processed constructor, derive a pattern-match case. Add
the definition to the global context.

Each of these steps is described below.
In an Idris datatype, there is no syntactic distinction between param-

eters and indices. Instead, their role is inferred by the compiler when it
inspects their mode of use in the constructors. This arrangement allows
greater freedom in the ordering of type constructor arguments, which can
be convenient for type class resolution.

In the following highly-explicit definition of Vect, the binding sites of
parameters in the type constructor and in each data constructor have been

9.5. Other Applications 119

underlined. Note that the parameters need not occur in any particular
position.

data Vect : Nat -> Type -> Type where
Nil : {a : Type} -> Vect Z a
(::) : {n : Nat} -> {a : Type} ->

(x : a) -> (xs : Vect n a) ->
Vect (S n) a

Preprocessing the Type Constructor and Constructors

For purposes of deriving, a type constructor is represented by the follow-
ing record:

record TyConInfo where
constructor MkTyConInfo
args : List TyConArg
result : Raw

TyConArg is the datatype described in Chapter 5. The expectation is that
all instances of this record will have uniquely named type constructor ar-
guments, but this invariant is not guaranteed in the type. This is because
the underlying Raw representation of TT does not provide sufficient flexi-
bility to define custom representations of bound variables. While it would
be possible to work around this by cleverly indexing the type of lists, it
would complicate the code. Exploring the tradeoffs between highly de-
pendent representations and simple, ML-style datatypes for reflection is
left to future work.

Preprocessing of constructors is a similar process. Because Idris’s re-
flection API distinguishes between the arguments to constructors that are
parameters to the family and those that are not, the only thing that needs
to be done is to ensure consistency of naming between them and the Ty-
ConInfo.

Because the code that performs these operations is a completely ordi-
nary functional program, it is elided here.

Computing the Eliminator’s Type

The eliminators constructed with this library take the following arguments:

• the parameters, which are quantified over the whole eliminator;

120 Chapter 9. Elaborator Reflection

vectElim : (a : Type) ->
(n : Nat) -> (xs : Vect n a) ->
(motive : (n' : Nat) -> Vect n' a -> Type) ->
(nil : motive Z Nil) ->
(cons : (n' : Nat) ->

(y : a) ->
(ys : Vect n' a) -> motive n' ys ->
motive (S n') (y :: ys)) ->

motive n xs

Figure 9.7: The type of the eliminator for Vect.

• the instance being eliminated, with its indices, here referred to as
the scrutinee;

• the motive, which explains the context targeted by the eliminator;
and

• the methods, which explain how to achieve the motive for each po-
tential constructor of the scrutinee, given the inductive hypotheses.

For example, the type of the eliminator of the previous definition of Vect
is given in Figure 9.7.

Deriving Pattern-Match Cases

Elaboration of the type occurs in a hole with goal type ⋆, using a recur-
sively-invoked elaboration script to ensure that it is valid in the top-level
environment. The elaborator for the eliminator type is listed in Figure 9.8.
The first step, binding the parameters, is performed with the simple oper-
ation bindParams. Because the pre-processing of the type constructor and
the constructor ensured that the parameters have the same name across
all instances, it is sufficient to bind each of them with forall. No attack
is necessary, because we are aware of the shape of the proof term, having
just created it.

bindParams : TyConInfo -> Elab ()
bindParams info = traverse_ (uncurry forall) (getParams info)

Next, the scrutinee is quantified. This is done using the bindTarget op-
erator, which computes fresh names for all indices of the datatype along

9.5. Other Applications 121

getElimTy : TyConInfo -> List (TTName, List CtorArg, Raw) -> Elab Raw
getElimTy info ctors =

do ty <- runElab `(Type) $
do bindParams info

(scrut, iren) <- bindTarget info
motiveN <- gensym "P"
motiveH <- newHole "motive" `(Type)
forall motiveN (Var motiveH)
focus motiveH
elabMotive info

for_ {b=()} ctors $ \(cn, cargs, cresty) =>
bindMethod info motiveN cn cargs cresty

let ret = mkApp (Var motiveN)
(map (Var . fst)

(getIndices info) ++
[Var scrut])

apply (alphaRaw iren ret) []
solve

forget (fst ty)

Figure 9.8: Elaborating the Eliminator Type.

with a renaming from the previous index names. It then binds each index
using forall and then binds the scrutinee as the type constructor applied
to the global parameters and the renamed indices. This renaming is saved
for later when it will be used in the conclusion of the eliminator’s type.
Here, alphaRaw is a function that applies a renaming to a Raw term.

bindIndices : TyConInfo -> Elab Renamer
bindIndices info = bind' (getIndices info) noRenames

where bind' : List (TTName, Raw) -> Renamer -> Elab Renamer
bind' [] ren = return ren
bind' ((n, t) :: ixs) ren = do n' <- nameFrom n

forall n' (alphaRaw ren t)
bind' ixs (extend ren n n')

122 Chapter 9. Elaborator Reflection

bindTarget : TyConInfo -> Elab (TTName, Renamer)
bindTarget info = do ren <- bindIndices info

tn <- gensym "target"
forall tn (alphaRaw ren $ result info)
return (tn, ren)

The next step is to bind the motive. Because its type must be computed,
a new hole (motiveH) is established, and the helper script elabMotive is
used to populate it. This script once again quantifies over the indices as
well as an instance of the constructor applied to the parameters and in-
dices. Because the result application is explicitly represented in TyConInfo,
all that needs to be done is to rename the indices.

elabMotive : TyConInfo -> Elab ()
elabMotive info = do attack

ren <- bindIndices info
x <- gensym "scrutinee"
forall x (alphaRaw ren $ result info)
fill `(Type)
solve
solve

To construct the method types, the bindMethod helper is applied to each
pre-processed constructor in turn. It constructs a hole to receive the type
of the method, binds it, and then fills the hole using elabMethodTy.

bindMethod : TyConInfo ->
(motiveName, cn : TTName) ->
List CtorArg -> Raw -> Elab ()

bindMethod info motiveName cn cargs cty =
do n <- nameFrom cn

h <- newHole "methTy" `(Type)
forall n (Var h)
focus h; elabMethodTy info motiveName cargs cty (Var cn)

The helper elabMethodTy constructs the type of the method correspond-
ing to a particular constructor. It iterates over the list of constructor argu-
ments, emitting forall bindings as it encounters constructor fields and
accumulating the final application of the constructor to these bound vari-
ables that the method must demonstrate the motive for. Additionally, at
each field, the procedure invokes mkIH, which checks whether the current

9.5. Other Applications 123

argument is an instance of the family being eliminated and, if so, addi-
tionally emits a binding of the relevant inductive hypothesis. At the end
of the argument list, the hole is filled with the application of the motive. It
is only explicitly applied to one argument — the accumulated application
of the constructor to the bound variables — and its other arguments are
all solved using Idris’s unifier, as the indices forced by the constructor’s
definition are all apparent in its type.

elabMethodTy : TyConInfo ->

TTName -> List CtorArg ->

(res, ctorApp : Raw) -> Elab ()

elabMethodTy info motiveName [] res ctorApp =

do argHoles <- apply (Var motiveName)

(replicate (length (getIndices info)) True ++

[False])

argH <- last argHoles

focus argH; fill ctorApp; solve

solve

elabMethodTy info motiveName (CtorParameter arg :: args) res ctorApp =

elabMethodTy info motiveName args res (RApp ctorApp (Var (name arg)))

elabMethodTy info motiveName (CtorField arg :: args) res ctorApp =

do let n = name arg

let t = type arg

attack; forall n t

mkIh info motiveName n t (result info)

elabMethodTy info motiveName args res (RApp ctorApp (Var n))

solve

Finally, the eliminator concludes with its conclusion: that the motive
applied to the scrutinee must indeed hold. The hole is finally filled and
solved with precisely that application.

Generating Pattern-Match Clauses

As described in Chapter 4, when Idris functions are elaborated, the left-
hand side is first elaborated into the constructor of a datatype that aids in
type inference. After this process, remaining holes are converted to pat-
tern variables. Then, this type is used as the goal for the right-hand side.
The helper elabPatternClause implements this pattern. It first establishes
the application of the constructor of Infer, then executes the tactic script
that will produce the left-hand side. Finally, all remaining holes are con-

124 Chapter 9. Elaborator Reflection

elabPatternClause : (lhs, rhs : Elab ()) -> Elab FunClause
elabPatternClause lhs rhs =

do (pat, _) <- runElab `(Infer) $
do th <- newHole "finalTy" `(Type)

patH <- newHole "pattern" (Var th)
fill `(MkInfer ~(Var th) ~(Var patH))
solve
focus patH
lhs
for_ {b=()} !getHoles $ \h =>
do focus h; patvar h

(pvars, `(MkInfer ~rhsTy ~lhsTm)) <- extractBinders <$>
forget pat

| fail [TextPart "Couldn't infer type of LHS"]
rhsTm <- runElab (bindPatTys pvars rhsTy) $

do repeatUntilFail bindPat <|> return ()
rhs

realRhs <- forget (fst rhsTm)
return $ MkFunClause (bindPats pvars lhsTm) realRhs

Figure 9.9: Helper function for elaborating pattern clauses.

verted to pattern variables. If this process was successful, the resulting
term will be a collection of pattern variables bound around the applica-
tion of MkInfer to the type and the left-hand side. This type, under the
same pattern binders, is used as a goal for the script that will produce the
right-hand side. Finally, the clause consisting of the left- and right-hand
sides is returned.

The Induction Tactic

The induction tactic is now straightforward to implement. The scrutinee
is type checked, and an eliminator is generated for the family if necessary.
Then, the goal type is generalized over the term to be eliminated by replac-
ing all references to it and its indices by variables, and these are 𝜆-bound
to produce the motive. A hole is generated for each method, and the elimi-
nator is applied to the scrutinee along with the motive. The method holes
are subsequently returned from the tactic so that the caller can solve them.

9.5. Other Applications 125

9.5.2 Deciding Equality

To show that a property is decidable is to provide a function that either
provides a witness for the property or a witness for its negation, across
the domain of interest. In Idris, this is captured in the family Dec:

data Dec : Type -> Type where
Yes : {A : Type} -> A -> Dec A
No : {A : Type} -> (A -> Void) -> Dec A

The notion of decidable equality is represented in Idris by the type class
DecEq:

class DecEq a where
total decEq : (x, y : a) -> Dec (x = y)

An instance of DecEq 𝑡 provides a verified means of checking whether any
two elements of type 𝑡 are propositionally equal. Just as a Haskell library
developer should provide Show, Read, Ord, Eq, Functor, and other ordinary
instances, Idris library developers should provide instances of DecEq for
their datatypes.

However, these instances are highly tedious to write. The definition
must pattern-match both of its arguments, resulting in 𝑛2 cases for a da-
tatype with 𝑛 constructors. In each case where the constructors do not
coincide, their disjointness must be witnessed by appealing to the fact
that reflexivity is trivially impossible. When the constructors do coincide,
then each field of the constructors must be checked pairwise for equal-
ity. When the two constructor fields are determined to be equal, then the
equality is used to make progress towards the eventual equality of the en-
tire terms being matched. When two corresponding constructor fields are
determined to be not equal, that fact can be combined with the injectiv-
ity of constructors to show that the entire terms being matched must not
be equal. This process is formulaic, and there is no room for interesting
deviations. Figure 9.10 contains an example of a hand-written decidable
equality procedure for a simple binary tree type.

The formulaic, tedious nature of these functions makes them into a
perfect candidate for automation. Because we are willing to accept any
total function that has the correct type, it makes sense to automate large
portions of the code generation using tactics and searching. The strategy
employed is to:

126 Chapter 9. Elaborator Reflection

data Tree a = Leaf | Branch (Tree a) a (Tree a)

injBranch : Branch l x r = Branch l' x' r' ->
(l = l', x = x', r = r')

injBranch Refl = (Refl, Refl, Refl)

instance DecEq a => DecEq (Tree a) where
decEq Leaf Leaf = Yes Refl
decEq Leaf (Branch l x r) = No (\(Refl) impossible)
decEq (Branch l x r) Leaf = No (\(Refl) impossible)
decEq (Branch l x r) (Branch l' x' r') with (decEq l l')

decEq (Branch l x r) (Branch l' x' r')
| No contra =

No (\h => case injBranch h of
(prf, _, _) => contra prf)

decEq (Branch l x r) (Branch l x' r')
| Yes Refl with (decEq x x')

decEq (Branch l x r) (Branch l x' r')
| Yes Refl | No contra =

No (\h => case injBranch h of
(_, prf, _) => contra prf)

decEq (Branch l x r) (Branch l x r')
| Yes Refl | Yes Refl with (decEq r r')

decEq (Branch l x r) (Branch l x r')
| Yes Refl | Yes Refl | No contra =

No (\h => case injBranch h of
(_, _, prf) => contra prf)

decEq (Branch l x r) (Branch l x r)
| Yes Refl | Yes Refl | Yes Refl =

Yes Refl

Figure 9.10: A hand-written procedure for deciding equality of binary trees.

9.5. Other Applications 127

• Generate all 𝑛2 pairs of constructors

• For each constructor pair, universally quantify over all constructor
arguments with pattern variables, relying on the elaborator’s unifier
to ensure that constructor fields forced by the types are filled out
appropriately

• On the right hand side of each case, inspect the type that occurs. If
it expects a decidability result for the equality of disjoint construc-
tors, construct a disjointness lemma and use that together with the
No constructor. If it expects a decidability result for the equality of
the same constructor, then examine the fields pairwise, performing
induction on the result of comparing the fields for equality.

Our implementation of decidable equality derivation requires the user
to specify a type signature that provides the type class constraints that
will be in scope. This means that elaborator reflection is only used to de-
rive the cases. Each case is produced using the elabPatternClause helper
defined in the previous section. In cases where the two constructors are
not the same, the disjoint tactic is used to produce a helper function that
serves as the argument to the No constructor.

Cases in which the same constructor is applied are more interesting.
The first step is to construct the sequence of equality tests that will eventu-
ally either prove or disprove the equality of the terms. For each matching
pair of arguments, either the generated function is called recursively or
decEq is applied. Then, the resulting terms are destructed using the induc-
tion tactic from the previous section. The method for the Yes constructor
rewrites with the contained equality proof, advancing the state of the goal,
while the method for the No constructor exploits an injectivity tactic to get
the assumption in scope that is necessary to transfer the negative result
for the equality of the arguments to be a negative result for the entire
equality.

Figure 9.11, which contains part of the derivation code, demonstrates
how this tactic-driven approach to code generation is written using Pruv-
iloj. The first definition in the figure is noCase, a tactic for dispatching the
case when one of the fields does not match. As an argument, it takes the
name of the in-scope witness that they do not match, which will be dis-
covered by performing induction on the result of the call to decEq. First, it
applies the No constructor, and then focuses on the argument. Because the
argument must witness a negation, and thus be a function, it introduces

128 Chapter 9. Elaborator Reflection

noCase : TTName -> Elab ()
noCase contra =

do [_, nope] <- apply (Var `{No}) [True, False]
| _ => fail [TextPart "Bad holes from"

, NamePart `{Tactics.apply}
]

solve
focus nope

h <- gensym "h"
inj <- gensym "inj"
attack
intro h
injective (Var h) inj
unproduct (Var inj)
ignore $ refine (Var contra) `andThen` hypothesis
solve

matchCase : List Raw -> Elab ()
matchCase [] = search
matchCase (tm :: tms) =

do (y :: n :: _) <- induction tm

focus n; compute
contra <- gensym "contra"
attack; intro contra
noCase contra; solve

focus y; compute
prf <- gensym "prf"
attack; intro prf
rewriteWith (Var prf)
matchCase tms
solve

Figure 9.11: Tactic script to dispatch matching constructor cases when deriving equality decision pro-
cedures.

9.5. Other Applications 129

as a hypothesis h that the two applications of the constructor are equal. It
then uses the injective tactic from Pruviloj to let-bind a product of the
pairwise equalities of the constructor arguments in the assumption, and
unproduct to bring all the elements of this product individually into scope.
Finally, it refines the goal by the witness that one of the arguments doesn’t
match, and uses the hypothesis tactic to select the correct equality.

When the pattern match is being generated, matchCase is used when
the implementation of decEq is being applied to two terms with the same
constructor at their head. The tactic is called with a list of terms that is the
pairwise combination of the constructor arguments with decEq — that is,
it consists of the subgoals that need to be checked. If there are no further
arguments to compare, then the result must be true, so the search tactic
will solve it with Yes Refl. If there is an argument, the induction tactic is
applied, resulting in obligations for the case where the equality holds and
the case where it does not. When the equality does not hold, the noCase
tactic is sufficient. When it does, rewriting with the equality brings the
derivation procedure one step closer to that final search.

This implementation is very different in character from the derivation
of eliminators. It illustrates a different mode of use of the reflected elab-
orator, relying to a much greater extent on search and automation. This
style of code generation is much more useful as our types increase in speci-
ficity.

9.5.3 Proof Automation

Some very simple tactics can take care of a large variety of proofs. In this
section, we demonstrate a simple tactic that can nevertheless prove many
of the theorems that are included in Idris’s standard library about the
functions that it exposes. Additionally, this demonstrates that partial tac-
tics can produce useful total definitions.

Figure 9.12 contains the complete source code to this tactic. The auto
tactic normalizes the goal, introduces as many times as possible, and then
attempts to rewrite with every equality in scope. It then checks if any vari-
able in scope solves the goal, and if none do, it invokes Idris’s built-in
proof search. Then, a tactic autoInduction performs induction on the first
thing in scope using auto to solve each of the returned holes.

This short tactic is able to prove many easy theorems, including the
associativity of addition on Nat, the left and right identity rules for multi-

130 Chapter 9. Elaborator Reflection

partial
auto : Elab ()
auto = do compute

attack
try $ repeatUntilFail intro'
hs <- map fst <$> getEnv
for_ hs $

\ih => try (rewriteWith (Var ih))
hypothesis <|> search
solve

partial
autoInduction : Elab ()
autoInduction =

do n <- gensym "n"
intro n
try intros
ignore $ induction (Var n) `andThen` auto

Figure 9.12: A simple automation procedure for proofs by induction.

plication, that map on List preserves the length of the list, that the length
of two appended lists is the sum of their lengths, and more.

Additionally, elaborator reflection provides the tools necessary to make
ordinary proof by reflection convenient. This example, a monoid equality
solver, roughly follows the structure of the one given by Chlipala [Chl11],
though it has been adapted quite heavily to Idris.

Figure 9.13 defines a representation of monoids, along with three in-
stances. The first step in solving equalities of monoid expressions is to
construct a reflected expression type. this type has three constructors, cor-
responding to the neut and op methods of the IsMonoid type class as well
as arbitrary other expressions.

data MonoidExpr a =
NEUT | VAR a | OP (MonoidExpr a) (MonoidExpr a)

These reified monoid expressions can be straightforwardly interpreted
as actual monoid expressions by interpreting each constructor using the
corresponding method of the IsMonoid class.

9.5. Other Applications 131

class IsMonoid a where
neut : a
op : a -> a -> a
neutLeftId : (x : a) -> neut `op` x = x
neutRightId : (x : a) -> x `op` neut = x
assoc : (x, y, z : a) -> op x (op y z) = op (op x y) z

instance IsMonoid () where
neut = ()
op () () = ()
neutLeftId () = Refl
neutRightId () = Refl
assoc () () () = Refl

instance IsMonoid Nat where
neut = Z
op = plus
neutLeftId _ = Refl
neutRightId = plusZeroRightNeutral
assoc = plusAssociative

instance [multMonoid] IsMonoid Nat where
neut = 1
op = mult
neutLeftId = multOneLeftNeutral
neutRightId = multOneRightNeutral
assoc = multAssociative

Figure 9.13: A representation of monoids with laws that enable instances to be used for proof by reflec-
tion.

132 Chapter 9. Elaborator Reflection

interpExpr : (IsMonoid a) => MonoidExpr a -> a
interpExpr NEUT = neut
interpExpr (VAR x) = x
interpExpr (OP x y) = op (interpExpr x) (interpExpr y)

The reflection proof technique is to show that these expressions can
be flattened to a normal form, namely lists, and then show that if two
expressions have equal normal forms then they also have equal interpre-
tations. This reduces the problem of proving equalities between monoid
expressions to the problem of proving equalities between lists.

We interpret this normal form of lists by folding it using the monoid
operations:

interpList : (IsMonoid a) => List a -> a
interpList xs = foldr op neut xs

Likewise, flattening a monoid expression to a list is a straightforward walk
over the tree:

flattenExpr : MonoidExpr a -> List a
flattenExpr NEUT = []
flattenExpr (VAR x) = [x]
flattenExpr (OP x y) = flattenExpr x ++ flattenExpr y

It is not difficult to show that flattening and interpretation commute. This
is demonstrated in Figure 9.14.

Now, given a representation of a proof goal as two MonoidExprs, we can
simplify it automatically, with full confidence. Unfortunately, it is exceed-
ingly tedious to write these MonoidExprs by hand. Luckily, this reification
can be automated using reflection. The first step is to write the reification
procedure, which pattern matches on a monoid term and constructs the
corresponding MonoidExpr. This procedure is given in Figure 9.15.

Then, the asMonoid tactic reflects on the current goal type, reifying each
side. This tactic is defined in Figure 9.16. As seen in Section 9.4, the tactic
remember let-binds the result of an elaboration script, while equiv replaces
the goal with a syntactically different but convertible goal. Having rewrit-
ten the proof goal to an equality of the interpretation of two monoid ex-
pressions, the monoid reflection theorem is then used to rewrite the proof
in terms of the flattened form. To ensure that spurious differences are not
introduced into the equality by type class resolution, asMonoid takes a re-
flected dictionary as an argument and ensures that it is used consistently.

9.5. Other Applications 133

opAppend : (IsMonoid a) => (xs, ys : List a) ->
op (interpList xs) (interpList ys) =
interpList (xs ++ ys)

opAppend [] ys = neutLeftId _
opAppend (x :: xs) ys =

rewrite sym $ opAppend xs ys in
sym $ assoc x (interpList xs) (interpList ys)

flattenOk : (IsMonoid a) =>
(e : MonoidExpr a) ->
interpExpr e = interpList (flattenExpr e)

flattenOk NEUT = Refl
flattenOk (VAR x) = sym $ neutRightId x
flattenOk (OP x y) =

rewrite flattenOk x in
rewrite flattenOk y in
opAppend (flattenExpr x) (flattenExpr y)

monoidReflection : (IsMonoid a) =>
(x, y : MonoidExpr a) ->
interpList (flattenExpr x) =
interpList (flattenExpr y) ->
interpExpr x = interpExpr y

monoidReflection x y prf =
rewrite flattenOk x in
rewrite flattenOk y in
prf

Figure 9.14: Flattening and interpretation of monoid expressions commute.

134 Chapter 9. Elaborator Reflection

reifyExpr : Raw -> Elab ()
reifyExpr `(op {a=~a} @{~dict} ~x ~y)

do [l, r] <- apply `(OP {a=~a}) [False, False]
solve
focus l; reifyExpr x
focus r; reifyExpr y

reifyExpr `(neut {a=~a} @{~dict}) =
do fill `(NEUT {a=~a})

solve
reifyExpr tm =

do [_, h] <- apply (Var `{VAR}) [True, False]
solve
focus h; fill tm
solve

Figure 9.15: Reification of monoid expressions to the custom expression type.

Now, somewhat complicated monoid expressions can be solved di-
rectly:

test1 : (IsMonoid a) =>
(w, x, y, z : a) ->
((w `op` x) `op` (y `op` z)) =
(w `op` (x `op` (y `op` (z `op` IsMonoid.neut))))

test1 @{dict} w x y z = %runElab (do asMonoid (Var `{dict})
reflexivity)

This is all well and good if one is trying to prove properties of monoids
in general, but it’s not very useful for other kinds of equalities that natu-
rally arise during proof work. Expressions that are already expressed in
terms of the underlying type need to have custom reification procedures
to enable this technique. Writing a reification procedure for Nat and plus
enables the following proof to be automated:

test2 : (x, y, z : Nat) ->
plus (plus (plus z 13) z) (plus x (plus y Z)) =
z `plus` (13 `plus` ((z `plus` x) `plus` y))

test2 x y z = %runElab (do dict <- natPlusAsMonoid
asMonoid dict
reflexivity)

9.6. Agda-Style Reflection 135

asMonoid : (dict : Raw) -> Elab ()
asMonoid dict =

case !goalType of
`((=) {A=~A} {B=~B} ~e1 ~e2) =>

do l <- gensym "L"
r <- gensym "R"

remember l `(MonoidExpr ~A); reifyExpr e1
remember r `(MonoidExpr ~B); reifyExpr e2

equiv `((=) {A=~A} {B=~B}
(interpExpr {a=~A} @{~dict} ~(Var l))
(interpExpr {a=~B} @{~dict} ~(Var r)))

[h] <-
apply `(monoidReflection {a=~A} @{~dict}

~(Var l) ~(Var r))
[True]

solve
focus h

Figure 9.16: A tactic for simplifying equalities of monoid expressions using reflection.

The reification procedure returns the dictionary that it used to reify the
expression.

9.6 Agda-Style Reflection

Like Idris’s implementation of reflection, Agda’s reflection API (described
in Section 3.3.1) uses an untyped representation of terms, relying on a
later type checking pass to ensure that metaprograms have generated
meaningful programs. However, this reflection system nonetheless occu-
pies a quite different region of the design space than Idris’s elaborator re-
flection. First off, Agda’s reflection system is not modeled as a collection
of compile-time side effects, but rather as a fixed collection of metaoper-
ators for quoting and splicing. Secondly, Agda reflection uses high-level

136 Chapter 9. Elaborator Reflection

Agda terms for metaprogramming, rather than a low-level core language.
This is part of what seemingly allows it to avoid side effects, because it
becomes possible to use high-level Agda features, such as hidden and in-
stance arguments. These features are then resolved in the ordinary fash-
ion when reflected terms or definitions are spliced. Thirdly, Agda’s re-
flection system only represents the normal form of terms. This allows its
users to ignore that the same underlying open term can have many dif-
ferent syntactic representations, and only worry about one of them. On
the other hand, it can necessitate manually running computation back-
wards in some cases, where a non-normalized term is more convenient to
work with. Finally, Agda’s quotation mechanism is not as flexible as the
quasiquotations we describe in Chapter 7. To compensate for the lack of
quasiquotation pattern matching, pattern synonyms are frequently used
to make matching against reified terms look more like matching against
their high-level syntax. Additionally, van der Walt [vdW12] implemented
an automatic quotation library that, given a declarative description of
how to map Agda terms to constructors of some expression type, will gen-
erate the mapping itself, after which a convenient, domain-specific type
can be used.

Agda’s reflection mechanism provides the following operators:

• quote 𝑛 quotes a global name 𝑛 to its abstract reflected representa-
tion. It is an error to quote a locally-bound name.

• quoteTerm 𝑒 quotes the normal form of 𝑒 to the Term datatype.

• unquote 𝑒 splices the result of evaluating 𝑒.

• quoteGoal 𝑥 in 𝑒 binds the name 𝑥 to the reflected representation of
the type that is expected for the term in the scope 𝑒.

• quoteContext 𝑥 in 𝑒 binds the name 𝑥 to a list of the reflected names
that are available in scope.

• unquoteDecl 𝑑 splices a quoted declaration 𝑑

• unquoteDef cs splices a list of quoted function clauses cs as the defi-
nition of an already-declared function

• tactic 𝑒 is an abbreviation for quoteGoal 𝑥 in unquote (𝑒 𝑥).

9.6. Agda-Style Reflection 137

• tactic 𝑒 | 𝑒1 | …| 𝑒𝑛 is an abbreviation for quoteGoal 𝑥 in unquote
(𝑒 𝑥) 𝑒1 … 𝑒𝑛. The intention is that unquote (𝑒 𝑥) will produce a
function, whose arguments correspond to subgoals to be filled by
𝑒1 … 𝑒𝑛.

Additionally, primitive operators are provided to allow reflection on def-
initions and to look up the type of a name.

Because Agda’s reified terms represent the high-level language and
can contain features such as unresolved implicit arguments, splicing them
can have effects beyond the terms themselves by modifying the global
metavariable context. While these operators may appear to be pure, they
have effects nonetheless.

A simple Agda tactic to solve trivial goals, corresponding to the one
built in Section 9.1.2, is defined in Figure 9.17. Instead of using van der
Walt and Swierstra’s AutoQuote library [WS12], the example achieves
readable pattern matching on terms by defining pattern synonyms that
syntactically resemble the term whose quotation is being matched. The el-
lipsis ... is Agda notation for repeating the pattern that is being refined
using the with rule. Like the example Idris tactic, this tactic computes an
inhabitant for a small collection of datatypes. It can be employed using
the tactic syntax:

test : ⊤ × ℕ × Either ⊤ ⊥ × Either ⊥ ⊤
test = tactic trivial

Normalizing test yields the value tt , zero , left tt , right tt.
It is possible to implement a large subset of Agda’s reflection API us-

ing the reflected elaborator. In particular, the following operators can be
implemented: quote, quoteTerm, unquote, tactic, quoteGoal and quoteCon-
text. The quote operator already exists as a language feature — it is the
quoted name syntax described in Section 7.5. The quoteTerm operator can
be defined as an elaborator script that quotes from Idris’s own core lan-
guage to an implementation of an Agda-style term type. This must be
combined with a syntax rule that let-binds the term to be quoted and
then runs an elaborator script to access the bound term and fill the cur-
rent hole with it’s quotation.

Like quoteTerm, the operators quoteGoal and quoteContext can be im-
plemented by using a syntax rule to let-bind the body of the quotation
operator, lambda-abstracted over the variable to which the quotation is

138 Chapter 9. Elaborator Reflection

pattern `⊤ = def (quote ⊤) []
pattern `ℕ = def (quote ℕ) []
pattern _`×_ a b =

def (quote _×_) (arg _ a ∷ arg _ b ∷ [])
pattern `Either a b =

def (quote Either) (arg _ a ∷ arg _ b ∷ [])

trivial' : Term → Maybe Term
trivial' `⊤ = just (quoteTerm tt)
trivial' `ℕ = just (quoteTerm zero)
trivial' (a `× b) with trivial' a | trivial' b
... | just x | just y =

just (con (quote _,_)
(arg (arg-info visible relevant) x ∷
arg (arg-info visible relevant) y ∷ []))

... | just x | nothing = nothing
... | nothing | _ = nothing
trivial' (`Either a b) with trivial' a
... | just x =

just (con (quote left)
(arg (arg-info visible relevant) x ∷ []))

... | nothing with trivial' b
... | just x =

just (con (quote right)
(arg (arg-info visible relevant) x ∷ []))

... | nothing = nothing
trivial' _ = nothing

record Failure : Set where
constructor ItFailed

attempt : Maybe Term → Term
attempt (just x) = x
attempt nothing = quoteTerm ItFailed

trivial : Term → Term
trivial = attempt ∘ trivial'

Figure 9.17: A simple tactic in Agda’s reflection system.

9.6. Agda-Style Reflection 139

applied, and then applying this function to the reified information that re-
sults from an elaborator script. However, it is not possible to use quoteGoal
together with unquote to implement tactic directly as syntactic sugar in
the manner that it is done in Agda. This is because of the elaborator side
effects that can result. The meta-operations must be composed monadi-
cally inside of the same %runElab.

We have not attempted to implement quoteDecl or unquoteDecl, but it
should be a matter of finding the correct representation and then con-
structing it from Idris’s internal reflection datatypes. These datatypes al-
ready contain enough information.

Because Agda-style reflected terms include features like implicit argu-
ments, the unquoteTerm operator requires a part of the Idris term elabora-
tor to be re-implemented to arrange for these features to be solved. Luck-
ily, the infrastructure for this already exists: it was the original purpose
for which the elaborator was designed.

140 Chapter 9. Elaborator Reflection

9.7 Reflections on Elaborator Reflection

How can we situate Idris’s elaborator reflection in the design space for
reflection and metaprogramming mechanisms in general? How does it
compare to others used for dependent types? This section discusses how
we might answer these questions, contextualizing the reflected elaborator
in the design landscape.

9.7.1 Safety

Reflected elaborator scripts need not pass Idris’s totality checker. They
are allowed to contain infinite loops and they are allowed to have non-
covering pattern matches. Thus, they can crash while running and they
introduce non-termination into the elaboration process. However, they
cannot undermine the safety of Idris in general. This is because the result
of elaboration must still pass the type checker and the totality checker in
order to be accepted by Idris. If elaboration terminates, then the result
will be checked as usual.

Even though the resulting programs are safe, non-termination at com-
pile time can still be irritating. However, just as with run-time programs,
users still have access to Idris’s totality checker and are able to use it to
ensure that metaprograms terminate.

Additionally, a termination analysis is a bit of a red herring. While it
is important for the consistency of a logic, reflected elaboration scripts
are not proofs: they are programs that are used to construct proofs. Even
in strongly normalizing systems, it is possible to write programs with
execution times that exceed the users’ patience. In practice, the aim of
a terminating compiler is perhaps better achieved through a timeout or a
limit on the number of reduction steps that are allowed.

9.7.2 Datatypes

Elaborator reflection is an open-ended system. Additional effects can be
added in the future by extending the interpreter. Thus, it need not be able
to account for all desired use cases immediately. Nevertheless, it is instruc-
tive to evaluate its suitability for a variety of tasks, and there is one impor-
tant feature that it presently lacks: the ability to define new datatypes.

This would allow the automated construction of Bove-Capretta predi-
cates [BC03]. For this to work for nested recursive functions, it would need

9.7. Reflections on Elaborator Reflection 141

to be possible to define inductive-recursive families as well as ordinary in-
ductive families. This can be achieved by having a two-step process simi-
lar to the one used for adding function definitions. First, declareDatatype
would take a family name and a representation of the type constructor
arguments, just like declareType. Then, defineConstructors would define
the type using its constructors. The current reflected datatype definition
described in Chapter 5 is not suitable for this task, as it would require
the user to identify details such as parameters and indices. This is a task
better left to a machine.

9.7.3 Direct vs. Indirect

Barzilay [Bar06] distinguished between direct and indirect reflection mech-
anisms, where a direct reflection of some aspect of a language exposes
the surrounding system’s own implementation of a feature to itself, and
an indirect reflection reimplements it internally. Barzilay points out that
direct reflections are typically far shorter, not requiring heroic efforts to
implement simple features, although their internals are opaque and thus
not customizable by clients of the reflection system. There is also no need
to worry that a direct reflection does not agree with the system, while in-
direct reflection runs the risk of not accurately modeling its host. Finally,
indirect reflection can lead to an increase in the space needed to represent
a term that is exponential with regards to the quotation level.

The elaborator reflection mechanism described in this chapter is pri-
marily an instance of direct reflection, though its term representation data-
types are implemented indirectly. A disadvantage of direct reflection is
that the language’s ordinary means of constructing and destructing data-
types cannot be used, and additional primitives must be provided. The
indirect representation of datatypes allows them to be used with ordi-
nary Idris pattern matching, while the elaboration of quasiquotations de-
scribed in Chapter 7 removes the exponential syntactic overhead of an
indirect representation. The exponential increase in size is not a major
problem, because real metaprograms use only a single level of quotation
in practice. Additionally, TT is a very simple language that changes only
infrequently, lessening the maintenance burden of indirect reflection. Fi-
nally, the use of an indirect representation of reified terms means that the
core language did not need to be extended at all in order to implement
elaborator reflection, which means that it cannot undermine the safety
of the system, unlike the direct reflection used in Brady’s experimental

142 Chapter 9. Elaborator Reflection

typed reflection [Bra13a].
When metaprograms written using Idris quasiquotations and elabo-

rator reflection are contrasted with the type-safe metaprogramming de-
scribed by Devriese and Piessens [DP13], the advantages of direct reflec-
tion become apparent: deriving Show for Nat took approximately 1200 lines
of Agda code in their framework, much of which was occupied by a proof
obligation, and their description of datatypes supports only a small frac-
tion of the datatypes supported by Agda, ruling out things like param-
eters, indices, and non-recursive constructor arguments. A similar pro-
gram written using elaborator reflection and the Pruviloj library requires
only around 300 lines of code, and it supports many more datatypes. Fur-
thermore, Devriese and Piessens’s description of datatypes does not take
into account features that are important for actual implementations of
Show, such as ensuring correct placement of parentheses and hiding im-
plicit arguments.

Using the reflected elaborator mechanisms for proof automation fur-
ther underscores the benefits of a direct reflection. While Kokke and Swier-
stra [KS15] needed to implement features such as unification themselves,
automation procedures in Idris can simply re-use the existing unifier, au-
tomatically benefiting from improvements.

9.7.4 Typing and Reflection

The only reason we have to think that an element of TT represents a well-
typed term is that it was generated by Idris’s type checker, but that in-
formation about its provenance is not represented anywhere. The only
way to ensure that a metaprogram has done what it should is to run it
and check the result. Some metaprogramming systems use type annota-
tions on reflected terms to ensure that metaprograms generate well-typed
terms, including MetaML [TS00] and F#’s code quotations [Sym06]. The
structure of these typed term representations is not made available to
users, and they rely on the surrounding system’s implementation of pars-
ing and type checking. Thus, they are also instances of direct reflection.
The term representation given by Devriese and Piessens [DP13] can be
seen as another example of the well-typed term approach to metapro-
gramming, this time implemented as indirect reflection. In the world of
proof assistants, tactic metaprogramming systems such as VeriML [SS10]
and MTac [Zil+13] make guarantees about the types of goals that metapro-

9.7. Reflections on Elaborator Reflection 143

grams are able to solve, while most other tactic languages (including Coq’s
LTac [Del00]) do not make these kinds of guarantees.

While Idris’s elaborator reflection makes use of Idris’s type system to
prevent mistakes such as confusing a name with a term and nothing pre-
vents users from using more advanced types in their own tactics, the re-
flected elaborator does not use types to rule out metaprograms that do
not guarantee their results to be well typed. In some sense, this is a mat-
ter of taste: should metaprogramming provide a means of escaping a type
system when it becomes inconvenient, or should it provide new ways of
employing a type system? Neither option is obviously superior.

Elaborator reflection has special support from the compiler. Thus, it
occupies a privileged position in Idris. Any other metaprogramming sys-
tem that we would like to implement must be expressible either directly
in Idris or in the reflected elaborator. If the reflected elaborator made the
kind of strong typing guarantees that are made by systems like MTac,
then it would not be able to be used to implement tactic systems that
do not. At the same time, because the reflected elaborator provides ac-
cess to the type checker and evaluator, it can be used to implement typed
metaprogramming or proof automation systems.

9.7.5 Nested Elaboration

It is presently impossible to “escape” back to the standard elaborator and
make use of the elaborated form of an ordinary Idris subterm. The present
situation is analogous to a quotation mechanism that does not support
quasiquotations. The ability to escape to the main elaborator and cap-
ture its results would allow elaborator scripts to not only produce values,
but also to transform them. For instance, elaborator reflection could be-
come usable for type-aware, domain- and library-specific program trans-
formations and optimizations in the style of HERMIT [Far+12], which
has been used to implement stream fusion [FHG14], optimizing generic
traversals [AFM14], and automating standard transformations from the
literature [SFG13]. Additionally, it would allow the addition of arbitrary
new binding forms to Idris, which the current system only allows to a lim-
ited extent. Finally, embedded languages would expand their FFI abilities
to Idris beyond mere references to Idris names.

This could be implemented by enriching the reflection datatypes de-
fined in Chapter 5 with a representation of terms in the fully desugared
high-level Idris language, perhaps called IdrisTerm. Next, the quotation

144 Chapter 9. Elaborator Reflection

mechanism described in Chapter 7 would need to be extended with sup-
port for non-elaborated quotations of this high-level term datatype. Fi-
nally, the Elab language would need a new primitive operator elabIdris
with type IdrisTerm -> Elab () that would invoke the Idris elaborator on
the embedded term. The semantics would be given by:

𝒳 JelabIdris 𝑒K = ℰ Junquote 𝑒K
where unquote is a meta-operation that transforms a TT datatype that
represents Idris terms into an Idris term suitable for the elaborator. This
fairly heavyweight approach would allow scripts written in the reflected
elaborator to defer to Idris’s own elaborator.

Unfortunately, there are a few problems with this approach. Unlike
TT, high-level Idris, even in its desugared form, is a quite complicated lan-
guage that changes on a regular basis. Maintaining an Idris mirror of the
datatype would add significantly to the maintenance burden. Addition-
ally, quoted Idris terms would need to be able to refer to variables in their
lexical environment. This means that the some of the transformations ap-
plied prior to elaboration, which can involve renaming bound variables,
must also be applied within quotations; however, the elaborator script
around the quotation might have shadowed the external variable. Thus,
relying on quotations and an elaboration primitive to access Idris’s own
elaborator would drastically limit the source-to-source transformations
that could be applied prior to elaboration. On the other hand, metapro-
grams that rely on explicit name capture are notoriously difficult to write
correctly, so it might be even better to elaborate these quoted terms with-
out access to the lexical environment, relying on explicit 𝜆-abstractions
inside the quotations to apply the names.

An alternative approach would be to use direct reflection to embed the
Idris term elaborator in a reflected elaborator script. Because elaboration
scripts are written in the high-level Idris language, they must be elabo-
rated prior to execution in order to ensure that all the implicit details
and overloading have been resolved. Just as implementing the elabora-
tor required TT to be extended to a development calculus with holes and
guesses, this approach would require extending TT with a new kind of
term that represents a suspended elaboration and is computationally neu-
tral according to TT’s reduction semantics. Then, just as the elaborator’s
output is presently checked to ensure that there are no development cal-
culus features remaining, it would also need to be checked for suspended
elaborations, and if they are ruled out, then the core language as checked

9.7. Reflections on Elaborator Reflection 145

would remain unchanged. This direct reflection avoids the complications
of maintaining a reflected IdrisTerm datatype, and the lack of an analyz-
able concrete datatype for the high-level terms makes it feasible to impose
a hygiene discipline on names.

9.7.6 Interrupting and Resuming the Elaborator

The reflected elaborator provides an imperative language for metapro-
gramming, proof automation, and developing elaborators for domain-
specific languages. Because it inherits the general design of Idris’s own
elaborator, it is able to re-use features like the type checker and the uni-
fier. At the same time, because its operations are segregated in the Elab
type, it is easy to reason about when metaprogramming is occurring.

Due to its imperative nature, however, elaborator reflection gives up
on the straightforward, compositional execution semantics of pure func-
tional programming. Side effects are useful, but they are also difficult
to reason about without additional tools. For reasons discussed in Sec-
tion 9.3, the implementation of an otherwise pure language is not neces-
sarily a friendly environment to implement the tools that make impera-
tive programming tractable, such as breakpoints and logging. Addition-
ally, the embedding of Elab within the expressions of a functional lan-
guage makes it difficult to provide a step-by-step interface in the style
of Proof General, so we have implemented such an interface external to
source buffers.

9.7.7 Hint Databases

One useful feature found in many tactic-based proof assistants that has
no counterpart in our reflected elaborator is the notion of an extensible
hints database. In these systems, tactics have access to a bit of global state
that instructs them how to interact with features that did not exist when
the tactics were written. For instance, the list of names provided to the
byConstructors tactic might be stored in such a database, and users could
add new types to the list as they are defined. The MetaPRL proof assis-
tant [Hic01] has an advanced notion of hint databases known as resources,
which are conceptually lists of some particular type that are assembled by
the system from the corresponding resource values of all instances of that
resource in scope. This can be emulated by using Idris’s ad-hoc overload-
ing, but that lacks appropriate static type checks when hints are defined.

Chapter 10

Conclusions

This dissertation describes a collection of related static reflection mecha-
nisms for Idris. While they were originally developed as an implementa-
tion technique for embedded domain-specific languages, they ended up
being generally useful. Our error reflection is already being employed to
improve the error messages in the Idris standard library, and type class
deriving implemented with the reflected elaborator will soon drastically
reduce the amount of boilerplate required from users. Using our elab-
orator reflection, compiler features implemented in Haskell have been
replaced with Idris code, and Idris’s limited, special-purpose tactic lan-
guage has been replaced with Elab scripts that have access to the full
power of Idris. In that respect, these features have been a success.

However, some difficulties remain. Limitations in the implementation
of elaboration reflection lead to staging restrictions that expose the inter-
nal behavior of Idris’s elaborator. Additionally, the elaboration effects are
at a very low level of abstraction, and users have experienced difficulties
managing the hole queue and the need for attack. Likewise, type class
deriving is far too verbose, requiring a few hundred lines to implement
deriving of a simple instance.

As the implementation of a version of Agda’s tactic system shows,
it is possible to build higher-level proof automation languages using the
reflected elaborator. It would be good to explore the implementation of
alternative systems like MTac [Zil+13] as well as to provide a full imple-
mentation of an Agda-style reflection system. Likewise, it would be nice
to use a more advanced form of generic programming to implement fea-
tures like type class deriving, using the reflected elaborator in a manner
similar to how Norell and Jansson [NJ04] used Template Haskell to pro-

148 Chapter 10. Conclusions

totype new generic programming systems.
One weakness of the work presented here is that it appears as multiple

separate language features. In the future, their utility could increase if
they were combined. For instance, if reflected errors could be handled in
Elab, then they could do things like spell-checking unknown identifiers
against the names in scope, and error handlers could choose whether to
display normalized terms. Additionally, if the elaborator were extended
to support actual side effects in IO, potentially by making it interruptable
as suggested in Section 9.7.6 and allowing it to delegate to the main Idris
compiler, it would be able to subsume Idris’s type providers [Chr13a]. If
type providers had access to Elab, then they could perform both ordinary
execution and code generation.

The story of dependently typed programming is just beginning. De-
pendent types both enable and necessitate new ways of interacting with
our programs and the environments within which they compute. The
mechanisms presented in this dissertation show that we need not yield
the reflective high ground to dynamically typed languages, and that sim-
ply typed reflection combined with a dependently typed language can
provide the slack needed to place the burden of proof on the broadest
shoulders.

Bibliography

[AFM14] Michael D. Adams, Andrew Farmer, and José Pedro Magal-
hães. “Optimizing SYB Is Easy!” In: Proceedings of the 2014
ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. PEPM ’14. San Diego, California, USA: ACM,
2014.

[Agda] The Agda Team. The Agda Wiki. Accessed 2015.
[All+90] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and

William Aitken. “The Semantics of Reflected Proof”. In: Pro-
ceedings of Fifth IEEE Symposium on Logic in Computer Science.
June 1990, pp. 95–105.

[AlS14] Ahmad Salim Al-Sibahi. The Practical Guide to Levitation. M.Sc.
thesis, IT University of Copenhagen. 2014.

[AM03] Thorsten Altenkirch and Conor McBride. “Generic Program-
ming Within Dependently Typed Programming”. In: Proceed-
ings of IFIP TC2/WG2.1 Working Conference on Generic Program-
ming. 2003.

[Aug98] Lennart Augustsson. “Cayenne — a Language with Depen-
dent Types”. In: Proceedings of the Third ACM SIGPLAN Inter-
national Conference on Functional Programming. ICFP ’98. Bal-
timore, Maryland, USA: ACM, 1998, pp. 239–250.

[Axe+10] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer,
B. Lyckegård, A. Persson, M. Sheeran, J. Svenningsson, and
A. Vajdax. “Feldspar: A domain specific language for digital
signal processing algorithms”. In: Formal Methods and Models
for Codesign. MEMOCODE. IEEE, July 2010, pp. 169–178.

[Bar06] Eli Barzilay. “Implementing Reflection in Nuprl”. PhD thesis.
Cornell University, 2006.

150 Bibliography

[Baw99] Alan Bawden. “Quasiquotation in Lisp”. In: Proceedings of
the 1999 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation. Ed. by Olivier Danvy.
1999, pp. 4–12.

[BC03] Ana Bove and Venanzio Capretta. “Modelling General Re-
cursion in Type Theory”. In: Mathematical Structures in Com-
puter Science 15.4 (Mar. 2003).

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[Ben86] Jon Bentley. “Programming Pearls: Little Languages”. In: Com-
munications of the ACM 29.8 (Aug. 1986), pp. 711–721.

[BH12] Edwin Brady and Kevin Hammond. “Resource-Safe Systems
Programming with Embedded Domain Specific Languages”.
In: Practical Aspects of Declarative Languages. Ed. by Claudio
Russo and Neng-Fa Zhou. Vol. 7149. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2012, pp. 242–257.

[Bou+92] Richard J. Boulton, Andrew Gordon, Michael J. C. Gordon,
John Harrison, John Herbert, and John Van Tassel. “Expe-
rience with Embedding Hardware Description Languages
in HOL”. In: Proceedings of the IFIP TC10/WG 10.2 Interna-
tional Conference on Theorem Provers in Circuit Design: Theory,
Practice and Experience. Amsterdam, The Netherlands: North-
Holland Publishing Co., 1992, pp. 129–156.

[Bra13a] Edwin Brady. First-class Type-safe Reflection in Idris. Talk at
the 2013 ACM SIGPLAN Workshop on Dependently Typed
Programming. Sept. 2013.

[Bra13b] Edwin Brady. “Idris, a General Purpose Dependently Typed
Programming Language: Design and Implementation”. In:
Journal of Functional Programming 23.05 (2013), pp. 552–593.

[Bra13c] Edwin Brady. “Programming and Reasoning with Algebraic
Effects and Dependent Types”. In: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming.
ICFP ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 133–
144.

Bibliography 151

[Bra14] Edwin Brady. “Resource-Dependent Algebraic Effects”. En-
glish. In: Trends in Functional Programming. Ed. by Jurriaan
Hage and Jay McCarthy. Vol. 8843. Lecture Notes in Com-
puter Science. Springer International Publishing, 2014, pp. 18–
33.

[Bur13] Eugene Burmako. “Scala Macros: Let Our Powers Combine!:
On How Rich Syntax and Static Types Work with Metapro-
gramming”. In: Proceedings of the 4th Workshop on Scala. Mont-
pellier, France: ACM, 2013.

[C#E] Microsoft. Expression Trees (C# and Visual Basic). http://msdn.
microsoft.com/en-us/library/bb397951.aspx. Accessed Au-
gust, 2014.

[CH00] Koen Claessen and John Hughes. “QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs”. In: Proceed-
ings of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’00. ACM, 2000, pp. 268–279.

[Cha+10a] Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf,
Arvind K. Sujeeth, Pat Hanrahan, Martin Odersky, and Kunle
Olukotun. “Language Virtualization for Heterogeneous Par-
allel Computing”. In: Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and
Applications. OOPSLA ’10. ACM, 2010, pp. 835–847.

[Cha+10b] James Chapman, Pierre-Évariste Dagand, Conor McBride, and
Peter Morris. “The Gentle Art of Levitation”. In: Proceedings
of the 15th ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’10. Baltimore, Maryland, USA: ACM,
2010, pp. 3–14.

[Cha09] James Chapman. “Type Theory Should Eat Itself”. In: Elec-
tronic Notes in Theoretical Computer Science 228 (2009), pp. 21–
36.

[Chl08] Adam Chlipala. “Parametric Higher-order Abstract Syntax
for Mechanized Semantics”. In: Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming.
ICFP ’08. Victoria, B.C., Canada: ACM, 2008, pp. 143–156.

[Chl11] Adam Chlipala. Certified Programming with Dependent Types.
Available online: http : / / adam . chlipala . net / cpdt/. MIT
Press, 2011.

http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://msdn.microsoft.com/en-us/library/bb397951.aspx
http://adam.chlipala.net/cpdt/

152 Bibliography

[Chl13] Adam Chlipala. “The Bedrock Structured Programming Sys-
tem: Combining Generative Metaprogramming and Hoare
Logic in an Extensible Program Verifier”. In: Proceedings of
the 18th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’13. Boston, Massachusetts, USA: ACM,
2013, pp. 391–402.

[Chr+14] David Raymond Christiansen, Henning Niss, Klaus Grue,
Kristján S. Sigtryggsson, and Peter Sestoft. “An Actuarial Pro-
gramming Language for Life Insurance and Pensions”. Pre-
sented at the International Congress of Actuaries, Washing-
ton, D.C., USA. 2014.

[Chr13a] David Raymond Christiansen. “Dependent Type Providers”.
In: Proceedings of the 9th ACM SIGPLAN Workshop on Generic
Programming. WGP ’13. Boston, Massachusetts, USA: ACM,
2013, pp. 25–34.

[Chr13b] David Raymond Christiansen. “Software Development for
the Working Actuary”. In: Proceedings of 4th International Sym-
posium on End-User Development. Ed. by Yvonne Dittrich, Mar-
garet Burnett, Anders Mørch, and David Redmiles. Vol. 7897.
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2013, pp. 266–271.

[Chr14a] David Raymond Christiansen. “Reflect on your mistakes! Light-
weight Domain-Specific Errors”. Unpublished manuscript. 2014.

[Chr14b] David Raymond Christiansen. “Type-Directed Elaboration
of Quasiquotations: A High-Level Syntax for Low-Level Re-
flection”. In: Proceedings of the 26th International Symposium
on Implementation and Application of Functional Languages. IFL
’14. Boston, Massachusetts, USA, Oct. 2014.

[Cic84] Eugene Charles Ciccarelli. Presentation Based User Interfaces.
Tech. rep. 794. Available from http://hdl.handle.net/1721.
1/6946, Accessed October 24, 2015. Massachusetts Institute
of Technology Artificial Intelligence Laboratory, Aug. 1984.

[CKS09] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. “Fi-
nally Tagless, Partially Evaluated: Tagless Staged Interpreters
for Simpler Typed Languages”. In: Journal of Functional Pro-
gramming 19.05 (2009), pp. 509–543.

http://hdl.handle.net/1721.1/6946
http://hdl.handle.net/1721.1/6946

Bibliography 153

[Con+86] R. L. Constable et al. Implementing Mathematics with the Nuprl
Proof Development System. Upper Saddle River, NJ, USA: Pren-
tice-Hall, Inc., 1986.

[Coq04] The Coq Development Team. The Coq Proof Assistant Reference
Manual. Version 8.0. LogiCal Project. 2004.

[Dan07] Nils Anders Danielsson. “A Formalisation of a Dependently
Typed Language as an Inductive-Recursive Family”. In: Types
for Proofs and Programs. Ed. by Thorsten Altenkirch and Conor
McBride. Vol. 4502. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, pp. 93–109.

[deB72] Nicolaas Govert de Bruijn. “Lambda calculus notation with
nameless dummies, a tool for automatic formula manipula-
tion, with application to the Church-Rosser Theorem”. In:
Indagationes Mathematicae 34 (1972), pp. 381–392.

[Del00] David Delahaye. “A Tactic Language for the System Coq”. In:
Proceedings of the 7th International Conference on Logic for Pro-
gramming and Automated Reasoning. LPAR’00. Reunion Island,
France: Springer-Verlag, 2000, pp. 85–95.

[DLW05] Dirk Draheim, Christof Lutteroth, and Gerald Weber. “A Type
System for Reflective Program Generators”. English. In: Gen-
erative Programming and Component Engineering. Ed. by Robert
Glück and Michael Lowry. Vol. 3676. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2005, pp. 327–341.

[DM95] François-Nicola Demers and Jacques Malenfant. “Reflection
in Logic, Functional and Object-Oriented Programming: a
Short Comparative Study”. In: Proceedings of the IJCAI ’95
Workshop on Reflection and Metalevel Architectures and their Ap-
plications in AI. Vol. 95. 1995, pp. 29–38.

[DP13] Dominique Devriese and Frank Piessens. “Typed Syntactic
Meta-programming”. In: Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’13.
Boston, Massachusetts, USA: ACM, 2013, pp. 73–86.

[Dyb00] Peter Dybjer. “A General Formulation of Simultaneous Inductive-
Recursive Definitions in Type Theory”. In: The Journal of Sym-
bolic Logic 65.02 (2000), pp. 525–549.

154 Bibliography

[Dyb94] Peter Dybjer. “Inductive Families”. In: Formal Aspects of Com-
puting 6.4 (1994), pp. 440–465.

[Far+12] Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe.
“The HERMIT in the Machine: A Plugin for the Interactive
Transformation of GHC Core Language Programs”. In: Pro-
ceedings of the ACM SIGPLAN Haskell Symposium. Haskell ’12.
Copenhagen, Denmark: ACM, 2012, pp. 1–12.

[FHG14] Andrew Farmer, Christian Höner zu Siederdissen, and Andy
Gill. “The HERMIT in the Stream”. In: Proceedings of the 2014
ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. PEPM ’14. San Diego, California, USA: ACM,
2014.

[HHS03] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. “Script-
ing the Type Inference Process”. In: Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Program-
ming. ICFP ’03. Uppsala, Sweden: ACM, 2003, pp. 3–13.

[Hic01] Jason J. Hickey. “The MetaPRL Logical Programming Envi-
ronment”. PhD thesis. Ithaca, NY: Cornell University, Jan.
2001.

[Hof+08] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adri-
aan Moors. “Polymorphic Embedding of DSLs”. In: Proceed-
ings of the 7th international conference on Generative program-
ming and component engineering. GPCE ’08. Nashville, TN, USA:
ACM, 2008, pp. 137–148.

[Hud96] Paul Hudak. “Building domain-specific embedded languages”.
In: ACM Computing Survey 28.4es (Dec. 1996).

[Hug95] John Hughes. “The Design of a Pretty-printing Library”. In:
Advanced Functional Programming, First International Spring School
on Advanced Functional Programming Techniques, Båstad, Swe-
den, May 24-30, 1995, Tutorial Text. 1995, pp. 53–96.

[HZS07] Shan Shan Huang, David Zook, and Yannis Smaragdakis. “Mor-
phing: Safely Shaping a Class in the Image of Others”. En-
glish. In: ECOOP 2007 – Object-Oriented Programming. Ed. by
Erik Ernst. Vol. 4609. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, pp. 399–424.

Bibliography 155

[Idr14] The Idris Community. Programming in Idris: A Tutorial. Ac-
cessed 19 October, 2015. Covers version 0.9.15 of Idris. Oct.
2014.

[Kel+10] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchin-
skiy, Simon Peyton Jones, and Ben Lippmeier. “Regular, Shape-
Polymorphic, Parallel Arrays in Haskell”. In: Proceedings of
the 15th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’10. Baltimore, Maryland, USA: ACM, 2010,
pp. 261–272.

[Kno87] Todd Knoblock. “Metamathematical Extensibility in Type The-
ory”. PhD thesis. Cornell University, 1987.

[KS15] Pepijn Kokke and Wouter Swierstra. “Auto in Agda”. English.
In: Mathematics of Program Construction. Ed. by Ralf Hinze
and Janis Voigtländer. Vol. 9129. Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 276–301.

[LP92] Zhaohui Luo and Robert Pollack. LEGO Proof Development
System: User’s Manual. Tech. rep. ECS-LFCS-92-211. Univer-
sity of Edinburgh, May 1992.

[Mai07] Geoffrey Mainland. “Why It’s Nice to Be Quoted: Quasiquot-
ing for Haskell”. In: Proceedings of the ACM SIGPLAN Work-
shop on Haskell. Haskell ’07. Freiburg, Germany: ACM, 2007,
pp. 73–82.

[Mar84] Per Martin-Löf. “Constructive mathematics and computer
programming [and discussion]”. In: Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and En-
gineering Sciences 312.1522 (Oct. 1984), pp. 501–518.

[McB10] Conor McBride. “Outrageous but Meaningful Coincidences:
Dependent Type-safe Syntax and Evaluation”. In: Proceedings
of the 6th ACM SIGPLAN Workshop on Generic Programming.
WGP ’10. Baltimore, Maryland, USA: ACM, 2010, pp. 1–12.

[McB99] Conor McBride. “Dependently Typed Functional Programs
and their Proofs”. PhD thesis. University of Edinburgh, 1999.

[MM04] Conor McBride and James McKinna. “The View from the
Left”. In: Journal of Functional Programming 14.1 (Jan. 2004),
pp. 69–111.

156 Bibliography

[MN94] Lena Magnusson and Bengt Nordström. “The ALF Proof Ed-
itor and Its Proof Engine”. In: Proceedings of the International
Workshop on Types for Proofs and Programs. TYPES ’93. Nijmegen,
The Netherlands: Springer-Verlag New York, Inc., 1994, pp. 213–
237.

[MOC] The MetaOCaml Team. MetaOCaml. http : / / www . cs . rice .
edu/~taha/MetaOCaml/. Accessed 2014.

[MP08] Conor McBride and Ross Paterson. “Applicative Program-
ming with Effects”. In: Journal of Functional Programming 18.1
(Jan. 2008), pp. 1–13.

[MS14] Weiyu Miao and Jeremy Siek. “Compile-time Reflection and
Metaprogramming for Java”. In: Proceedings of the ACM SIG-
PLAN 2014 Workshop on Partial Evaluation and Program Manip-
ulation. PEPM ’14. San Diego, California, USA: ACM, 2014,
pp. 27–37.

[MYM89] Scott McKay, William York, and Michael McMahon. “A Pre-
sentation Manager Based on Application Semantics”. In: Pro-
ceedings of the Second Annual ACM SIGGRAPH Symposium on
User Interface Software and Technology. UIST ’89. Williamsburg,
Virginia, USA: ACM, 1989, pp. 141–148.

[Naj+15] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip
Wadler. Everything Old is New Again: Quoted Domain Specific
Languages. Tech. rep. University of Edinburgh, 2015.

[NJ04] Ulf Norell and Patrik Jansson. “Prototyping Generic Program-
ming in Template Haskell”. In: Mathematics of Program Con-
struction. Ed. by Dexter Kozen. Vol. 3125. LNCS. Springer-
Verlag, 2004, pp. 314–333.

[Nor07] Ulf Norell. “Towards a Practical Programming Language Based
on Dependent Type Theory”. PhD thesis. Department of Com-
puter Science and Engineering, Chalmers University of Tech-
nology, Sept. 2007.

[OS08] Nicolas Oury and Wouter Swierstra. “The Power of Pi”. In:
Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming. ICFP ’08. Victoria, B.C., Canada:
ACM, 2008, pp. 39–50.

http://www.cs.rice.edu/~taha/MetaOCaml/
http://www.cs.rice.edu/~taha/MetaOCaml/

Bibliography 157

[PE88] Frank Pfenning and Conal Elliot. “Higher-order Abstract Syn-
tax”. In: Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation. PLDI ’88.
Atlanta, Georgia, USA: ACM, 1988, pp. 199–208.

[PS14] Tomas Petricek and Don Syme. “The F# Computation Ex-
pression Zoo”. In: Proceedings of Practical Aspects of Declara-
tive Languages. PADL 2014. San Diego, CA, USA, 2014.

[Qui81] Willard van Orman Quine. Mathematical Logic. Revised. Har-
vard University Press, 1981.

[Rau03] Daniel de Rauglaudre. Camlp4 Reference Manual. 2003.
[RO12] Tiark Rompf and Martin Odersky. “Lightweight Modular Stag-

ing: A Pragmatic Approach to Runtime Code Generation and
Compiled DSLs”. In: Communications of the ACM 55.6 (2012),
pp. 121–130.

[Rom+13] Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller,
and Martin Odersky. “Scala-virtualized: Linguistic Reuse for
Deep Embeddings”. In: Higher-Order and Symbolic Computa-
tion 25.1 (Sept. 2013), pp. 165–207.

[SA13] Josef Svenningsson and Emil Axelsson. “Combining Deep
and Shallow Embedding for EDSL”. English. In: Trends in
Functional Programming. Ed. by Hans-Wolfgang Loidl and Ri-
cardo Peña. Vol. 7829. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 21–36.

[SBO13] Denys Shabalin, Eugene Burmako, and Martin Odersky. Quasiquotes
for Scala. Tech. rep. 185242. École polytechnique fédérale de
Lausanne, 2013.

[SFG13] Neil Sculthorpe, Andrew Farmer, and Andy Gill. “The HER-
MIT in the Tree: Mechanizing Program Transformations in
the GHC Core Language”. In: Proceedings of the 24th Sympo-
sium on Implementation and Application of Functional Languages.
Vol. 8241. Lecture Notes in Computer Science. Oxford, Eng-
land, 2013, pp. 86–103.

[SJ02] Tim Sheard and Simon Peyton Jones. “Template Meta-programming
for Haskell”. In: Proceedings of the 2002 ACM SIGPLAN Work-
shop on Haskell. Haskell ’02. Pittsburgh, Pennsylvania: ACM,
2002, pp. 1–16.

158 Bibliography

[Smi84] Brian Cantwell Smith. “Reflection and Semantics in LISP”.
In: Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. POPL ’84. Salt Lake
City, Utah, USA: ACM, 1984, pp. 23–35.

[SS10] Antonis Stampoulis and Zhong Shao. “VeriML: Typed Com-
putation of Logical Terms inside a Language with Effects”.
In: Proceedings of the 2010 ACM SIGPLAN International Con-
ference on Functional Programming. ICFP ’10. Baltimore, Mary-
land, Sept. 2010, pp. 333–344.

[SS90] Harald Søndergaard and Peter Sestoft. “Referential Transparency,
Definiteness and Unfoldability”. In: Acta Informatica 27.6 (1990),
pp. 505–517.

[Sym+12] Don Syme et al. Strongly-Typed Language Support for Internet-
Scale Information Sources. Tech. rep. MSR-TR-2012-101. Microsoft
Research, Sept. 2012.

[Sym06] Don Syme. “Leveraging .NET meta-programming components
from F#: integrated queries and interoperable heterogeneous
execution”. In: Proceedings of the 2006 workshop on ML. Port-
land, Oregon, USA: ACM, 2006, pp. 43–54.

[Tob+11] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. “Languages As Li-
braries”. In: Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI
’11. San Jose, California, USA: ACM, 2011, pp. 132–141.

[TS00] Walid Taha and Tim Sheard. “MetaML and Multi-Stage Pro-
gramming with Explicit Annotations”. In: Theoretical Com-
puter Science 248.1 (2000), pp. 211–242.

[vdW12] Paul van der Walt. “Reflection in Agda”. MA thesis. Utrecht
University, 2012.

[Wad03] Philip Wadler. “A prettier printer”. In: The Fun of Program-
ming: A Symposium in Honor of Professor Richard Bird’s 60th
Birthday. Oxford, Mar. 2003.

Bibliography 159

[WS12] Paul van der Walt and Wouter Swierstra. “Engineering Proof
by Reflection in Agda”. In: 24th International Symposium on
Implementation and Application of Functional Languages. Ed. by
Ralf Hinze. Vol. 8241. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012.

[Zil+13] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami,
Aleksandar Nanevski, and Viktor Vafeiadis. “Mtac: A Monad
for Typed Tactic Programming in Coq”. In: Proceedings of the
18th ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP ’13. Boston, Massachusetts, USA: ACM, 2013,
pp. 87–100.

Appendix A

Elaborator Tactics

This appendix describes all of the meta-operations in our extended ver-
sion of Brady’s [Bra13b] idealized description of the Idris elaborator lan-
guage. These operations are presented in alphabetical order for ease of
reference. In this list, 𝑥 ranges over names, while 𝑡, 𝑡1, and 𝑡2 range over
terms and 𝑠 ranges over entire elaborator states.

• anything 𝑥 creates a hole 𝑥 whose type is also a hole, to assist in
type inference. This is a derived operator that is defined on page 66.

• attack arranges for the current hole to immediately occur in its scope.
This is a precondition for binding forms. This tactic is presented in
detail in Section 4.5.

• check 𝑡 invokes the type checker on a term 𝑡, returning its type.

• claim 𝑥 ∶ 𝑡 establishes a new hole named 𝑥 with type 𝑡 at the end of
the hole queue.

• elabAntiquote (𝑥, 𝑡) focuses on 𝑥 and elaborates 𝑡 into it. This is a
derived operator that is part of the quasiquotation mechanism, de-
fined on page 69.

• extractAntiquotes is a traversal over a quoted term that replaces
all antiquotations with fresh variables, remembering the mapping.
It is discussed on page 66.

• fail 𝑚 fails immediately with message 𝑚. It is used in the interpre-
tation of the fail primitive in the reflected elaborator on page 105.

162 Appendix A. Elaborator Tactics

• fill 𝑡 places 𝑡 in the currently-focused hole, converting it to a guess.
If the current focus is not a hole or if 𝑡 does not have the right type,
the tactic fails. It is first mentioned on page 29.

• focus 𝑥 moves the focus to the hole or guess 𝑥. The tactic fails if 𝑥 is
not in the hole queue. It is first used on page 28.

• forall 𝑥 ∶ 𝑡 surrounds the focused hole with a dependent function
binding. Like the other binding tactics, it requires that the hole’s
scope be an immediate reference to itself, so it should be bracketed
by an attack and a solve. It is first used on page 28.

• get binds the entire proof state to a metalanguage variable. It is used
to save the state during quasiquote elaboration on page 68

• goal binds the current goal type to a metalanguage variable. In this
dissertation, it is used in the implementation of polymorphic quasi-
quotations in Figure 7.5.

• guess retrieves the contents of the current guess, or fails if the fo-
cus is not on a guess. It is used during the elaboration of reflected
elaborator scripts in Figure 9.5.

• intro, when run with the focus on a hole that is expecting a depen-
dent function type, wraps the hole with a lambda, putting the fo-
cus on the body of the lambda. If the focused hole does not have a
function type or if the hole binding does not immediately contain a
reference to itself, then intro fails. Thus, it should be bracketed with
an attack and a solve.

• letbind 𝑥 ∶ 𝑡1 = 𝑡2 surrounds the current hole with a let-binding
of the name 𝑥 to term 𝑡2 with type 𝑡1. Like the other binding tactics, it
requires that the hole’s scope be an immediate reference to itself, so
it should be bracketed by an attack and a solve. It is first mentioned
on page 34.

• newProof 𝑡 initializes the term elaborator with goal 𝑡, which must
be a type. After running newProof 𝑡, the proof term is ?h ∶ 𝑡 . h
and the hole queue is h. It is first used in the description of the elab-
oration of quasiquotations on page 68.

163

• put 𝑠 replaces the current state with 𝑠. This is used during the elab-
oration of quasiquotations, to restore the current local context after
elaborating the quoted term. It is first used in Figure 7.2.

• reify and its variant reifyP quote a TT term to its representation as
a datatype. In addition to the term to be reified, they also accept a
collection of names to not be reified, which is part of the implemen-
tation of antiquotations. They are described on page 66.

• solve substitutes the currently focused guess in its scope, potentially
causing computation to occur. It is described on page 29.

• try 𝑎 𝑏 first runs 𝑎. If 𝑎 succeeds, then 𝑏 is not run; if 𝑎 fails, the elabo-
ration state is restored to what it was at the start of executing 𝑎 and
𝑏 is executed. The try tactical is described in the discussion of error
handling in the elaborator on page 22, though it is not mentioned by
name. In this dissertation, it is first used on page 73 in the descrip-
tion of polymorphic quotations.

• unfocus 𝑥 causes 𝑥 to be moved to the end of the hole queue.

• unquote transforms an element of the TT datatype representing TT
terms into the corresponding actual TT term.

Appendix B

The Idris Language

This appendix documents aspects of the syntax, semantics, and standard
library of Idris that differ from other, similar systems.

Bang Binds

In addition to Haskell’s do-notation as syntactic sugar for applications of
the bind operator >>=, Idris supports an alternative notation that can be
freely combined with it called bang binds. In Idris, ! (pronounced “bang”)
is a prefix operator that causes the expression it is applied to to be lifted
to under the scope of the closest enclosing binding, then bound. For ex-
ample,

main : IO ()
main = putStrLn (!getLine ++ !getLine)

is syntactic sugar for

main : IO ()
main = getLine >>= \x =>

getLine >>= \y =>
putStrLn (x ++ y)

If multiple sub-expressions are preceded by bangs, they are bound from
left to right, deepest first.

166 Appendix B. The Idris Language

Pattern-Matching Binds

Like Haskell, Idris supports pattern-matching binds inside of a do block.
However, in many cases, the type being matched against has more than
one possible constructor, with all but one expected result being consid-
ered errors that need handling. To account for this situation, Idris allows
alternative failure patterns to be specified. For instance, a program that
must read a file, but that might fail to do so, can be written:

main : IO ()
main = do Just info <- readInfoFromFile "magic-file.txt"

| Nothing => putStrLn "Couldn't read file"
processInfo info
presentOutput info

This is equivalent to:

main : IO ()
main = do x <- readInfoFromFile "magic-file.txt"

case x of
Nothing => putStrLn "Couldn't read file"
Just info =>

do processInfo info
presentOutput info

Rewriting Expressions

The Idris standard library defines the following function:

replace : {x, y : a} -> {P : a -> Type} ->
x = y -> P x -> P y

replace Refl prf = prf

This can be used to rewrite a proof goal according to an equality proof.
However, it is difficult to use, because Idris’s built-in unification mecha-
nism is typically not able to discover an appropriate value for P, which
represents the context within which the rewrite is performed. Manual in-
vocations of replace are thus typically verbose and tedious.

The Idris syntax rewrite 𝑒1 in 𝑒2 causes the elaborator to examine the
type of 𝑒1 to discover what is being rewritten, and then automatically ab-

167

stract the current goal over that to generate a P. It then fills its hole with
an application of replace to the appropriate arguments.

Uninhabited

A common Idris idiom is to create instances of the type class Uninhabited
for empty types. This is because these proofs are tedious to keep track of.

class Uninhabited a where
uninhabited : a -> Void

It is quite uncommon to appeal directly to uninhabited. Instead, id-
iomatic Idris will typically call absurd, which composes uninhabited with
the eliminator for Void.

Functors and Idioms

Like early versions of Haskell, Idris generalizes map to arbitrary functors
rather than having a separate fmap. Like recent versions of Haskell, Idris
provides (<$>) as an infix synonym for map.

Idris implements the idiom bracket syntax suggested by McBride and
Paterson [MP08]. In Idris, [| f x1 ... xn |] is syntactic sugar for

pure f <*> x1 <*> ... <*> xn

Alternatives

The Alternative class, found in both Haskell and Idris, is a means of ex-
pressing that an applicative has a monoidal structure. It defines an oper-
ation and a neutral element, and users expect that empty is a left and right
identity of <|> and that <|> is associative.

class Applicative f => Alternative f where
(<|>) : f a -> f a -> f a
empty : f a

The standard library defines a number of convenience functions that
use Alternative. In particular, this dissertation makes use of the following
functions:

168 Appendix B. The Idris Language

choice : (Foldable t, Alternative f) =>
t (f a) -> f a

choiceMap : (Foldable t, Alternative f) =>
(a -> f b) -> t (f a) -> f a

The choice function folds using the Alternative operators. In the case of
Elab, this corresponds to keeping the result of the first succeeding com-
putation. The convenience function choiceMap is a fusion of choice and
map.

Foldable and Traversable

As in modern Haskell, Idris provides standard Foldable and Traversable
type classes. An instance of Foldable provides pure left and right folds
over a datatype, and an instance of Traversableprovides an effectful traver-
sal by adding an Applicative constraint.

This dissertation uses a number of control structures based on Fold-
able and Traversable. The first two are the standard right and left folds,
foldr and foldl:

foldr : Foldable t => (elt -> acc -> acc) -> acc -> t elt -> acc
foldl : Foldable t => (acc -> elt -> acc) -> acc -> t elt -> acc

Effectful code, such as elaborator scripts, will typically make use of
one of the following operations:

traverse : (Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)

traverse_ : (Traversable t, Applicative f) =>
(a -> f b) -> t a -> f ()

Additionally, for and for_ reverse the order of arguments to traverse and
traverse_ respectively, which can be more readable in some contexts.

Named Instances and Explicit Instance Application

Unlike Haskell, Idris supports named instances of classes. Users can ex-
plicitly provide named instances as an alternative to the instances chosen
by instance resolution, and they will never be automatically used. Named

169

instances are defined by providing a name in square brackets after the
class keyword. At an application site, explicit instances are provided by
preceding them with @ and surrounding them with curly braces.

For example, let HasOp a be a class that provides some operator op, and
let squish be a function that applies op to four arguments:

class HasOp a where
op : a -> a -> a

squish : HasOp a => a -> a -> a -> a -> a
squish w x y z = (w `op` x) `op` (y `op` z)

There might be two separate instances for Nat, one using addition and
one using multiplication. Addition is the most commonly-desired opera-
tion, so it will be the default, but users can still opt in to multiplication if
they would like:

instance HasOp Nat where
op = plus

instance [multiply] HasOp Nat where
op = mult

Users can then choose the version they want to call:

> squish 1 2 3 4
10 : Nat

> squish @{multiply} 1 2 3 4
24 : Nat

Additionally, instance application syntax can be used on the left-hand
side of a definition to bind the resolved dictionary to a name.

Glossary

antiquotations . 62
a region of a quasiquotation that is not quoted

deep embedding . 10
an embedding of a DSL in which the terms are represented indirectly
as syntax trees

development calculus . 25
a term calculus extended with hole and guess bindings

direct reflection . 19
a reflection system in which the surrounding system is used for re-
flection (c.f. eval as a primitive operator in a Lisp implementation)

hygiene . 47
the property of a macro system in which its macros respect the lexical
scoping rules of the language

Idris− . 21
the desugared form of Idris that is the input to the elaborator

indirect reflection . 19
a reflection system in which the language is reimplemented in itself
(cf. metacircular evaluators)

levitation . 2
a technique for representing datatypes using a self-representing uni-
verse of codes

metalanguage . 47
the language used to write metaprograms, or reason about programs

172 Glossary

metaprogramming . 15
writing programs that generate or modify other programs

object language . 47
the programming language in which the programs to be generated
or manipulated by the metalanguage are written

plicity the property of being implicit or explicit . 41
presentation . 50

a region of program output that retains its association with the un-
derlying object represented by the output

proof by reflection . 37
a proof technique in which objects in type theory are mapped to some
simpler domain in which there exists a verified decision procedure

quasiquotation . 62
a form of quotation in which subterms of the quoted term can have
ordinary rather than quoted semantics

quasiquotation . 16
A form of quotation within which some subterms are not quoted and
have the ordinary evaluation rules of the language

reflection . 15
the representation of aspects of a programming language, such as
terms or error messages, as a datatype in the language itself

shallow embedding . 10
embeddings of DSLs that directly use the features of the host lan-
guage where they coincide with the features of the embedded lan-
guage

	Title Page
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	I Background
	2 Embedding Languages
	2.1 Embeddings, Deep and Shallow
	2.2 Representing Binders
	2.3 Syntactic Re-Use
	2.4 Elaborating Embedded Languages

	3 Reflection and Metaprogramming
	3.1 Quasiquotations in Programming Languages
	3.2 Static Reflection
	3.3 Reflection and Dependent Types

	4 The Idris Elaborator
	4.1 The Core Language
	4.2 Pattern-Matching Definitions and Data Types
	4.3 The Development Calculus
	4.4 Elaboration Example
	4.5 Binders in the Elaborator

	5 Reflection in Idris

	II Metaprogramming Idris
	6 A Pretty Printer that Says What it Means
	6.1 Presentations
	6.2 The Idris IDE Protocol
	6.3 Annotated Pretty Printing
	6.4 Conclusions

	7 Quasiquotation
	7.1 Example
	7.2 Idris Quasiquotations
	7.3 Elaborating Quasiquotations
	7.4 Polymorphic Quotations
	7.5 Quoted Names
	7.6 Future Extensions

	8 Error Reflection
	8.1 Introduction
	8.2 Error Reflection
	8.3 Applications
	8.4 Argument Error Handlers
	8.5 Implementation Considerations
	8.6 Related Work
	8.7 Conclusion and Future Work

	9 Elaborator Reflection
	9.1 Introductory Examples
	9.2 Elaborator Reflection, Defined
	9.3 Implementation Considerations
	9.4 The Pruviloj Library
	9.5 Other Applications
	9.6 Agda-Style Reflection
	9.7 Reflections on Elaborator Reflection

	10 Conclusions
	Bibliography
	A Elaborator Tactics
	B The Idris Language
	Glossary

